Loading…
Agreement Between Administrative Database and Medical Chart Review for the Prediction of Chronic Kidney Disease G category
Background: Chronic kidney disease (CKD) is a major health issue and cardiovascular risk factor. Validity assessment of administrative data for the detection of CKD in research for drug benefit and risk using real-world data is important. Existing algorithms have limitations and we need to develop n...
Saved in:
Published in: | Canadian journal of kidney health and disease 2020-01, Vol.7, p.2054358120959908-2054358120959908 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background:
Chronic kidney disease (CKD) is a major health issue and cardiovascular risk factor. Validity assessment of administrative data for the detection of CKD in research for drug benefit and risk using real-world data is important. Existing algorithms have limitations and we need to develop new algorithms using administrative data, giving the importance of drug benefit/risk ratio in real world.
Objective:
The aim of this study was to validate a predictive algorithm for CKD GFR category 4-5 (eGFR < 30 mL/min/1.73 m2 but not receiving dialysis or CKD G4-5ND) using the administrative databases of the province of Quebec relative to estimated glomerular filtration rate (eGFR) as a reference standard.
Design:
This is a retrospective cohort study using chart collection and administrative databases.
Setting:
The study was conducted in a community outpatient medical clinic and pre-dialysis outpatient clinic in downtown Montreal and rural area.
Patients:
Patient medical files with at least 2 serum creatinine measures (up to 1 year apart) between September 1, 2013, and June 30, 2015, were reviewed consecutively (going back in time from the day we started the study). We excluded patients with end-stage renal disease on dialysis. The study was started in September 2013.
Measurement:
Glomerular filtration rate was estimated using the CKD Epidemiological Collaboration (CKD-EPI) from each patient’s file. Several algorithms were developed using 3 administrative databases with different combinations of physician claims (diagnostics and number of visits) and hospital discharge data in the 5 years prior to the cohort entry, as well as specific drug use and medical intervention in preparation for dialysis in the 2 years prior to the cohort entry.
Methods:
Chart data were used to assess eGFR. The validity of various algorithms for detection of CKD groups was assessed with sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).
Results:
A total of 434 medical files were reviewed; mean age of patients was 74.2 ± 10.6 years, and 83% were older than 65 years. Sensitivity of algorithm #3 (diagnosis within 2-5 years and/or specific drug use within 2 years and nephrologist visit ≥4 within 2-5 years) in identification of CKD G4-5ND ranged from 82.5% to 89.0%, specificity from 97.1% to 98.9% with PPV and NPV ranging from 94.5% to 97.7% and 91.1% to 94.2%, respectively. The subsequent subgroup analysis (diabetes, hypertension, and |
---|---|
ISSN: | 2054-3581 2054-3581 |
DOI: | 10.1177/2054358120959908 |