Loading…

Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain

The phenylpropanoid metabolites are an extremely diverse group of natural products biosynthesized by plants, fungi, and bacteria. Although these compounds are widely used in human health care and nutrition services, their availability is limited by regional variations, and isolation of single compou...

Full description

Saved in:
Bibliographic Details
Published in:Microbial cell factories 2012-12, Vol.11 (1), p.153-153, Article 153
Main Authors: Kang, Sun-Young, Choi, Oksik, Lee, Jae Kyung, Hwang, Bang Yeon, Uhm, Tai-Boong, Hong, Young-Soo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b750t-ce1d8c3d6b169112ee5b463594dd891622161f01316c6bab30b7c4c4ba96b3523
cites cdi_FETCH-LOGICAL-b750t-ce1d8c3d6b169112ee5b463594dd891622161f01316c6bab30b7c4c4ba96b3523
container_end_page 153
container_issue 1
container_start_page 153
container_title Microbial cell factories
container_volume 11
creator Kang, Sun-Young
Choi, Oksik
Lee, Jae Kyung
Hwang, Bang Yeon
Uhm, Tai-Boong
Hong, Young-Soo
description The phenylpropanoid metabolites are an extremely diverse group of natural products biosynthesized by plants, fungi, and bacteria. Although these compounds are widely used in human health care and nutrition services, their availability is limited by regional variations, and isolation of single compounds from plants is often difficult. Recent advances in synthetic biology and metabolic engineering have enabled artificial production of plant secondary metabolites in microorganisms. We develop an Escherichia coli system containing an artificial biosynthetic pathway that yields phenylpropanoic acids, such as 4-coumaric acid, caffeic acid, and ferulic acid, from simple carbon sources. These artificial biosynthetic pathways contained a codon-optimized tal gene that improved the productivity of 4-coumaric acid and ferulic acid, but not caffeic acid in a minimal salt medium. These heterologous pathways extended in E. coli that had biosynthesis machinery overproducing tyrosine. Finally, the titers of 4-coumaric acid, caffeic acid, and ferulic acid reached 974 mg/L, 150 mg/L, and 196 mg/L, respectively, in shake flasks after 36-hour cultivation. We achieved one gram per liter scale production of 4-coumaric acid. In addition, maximum titers of 150 mg/L of caffeic acid and 196 mg/L of ferulic acid were achieved. Phenylpropanoic acids, such as 4-coumaric acid, caffeic acid, and ferulic acid, have a great potential for pharmaceutical applications and food ingredients. This work forms a basis for further improvement in production and opens the possibility of microbial synthesis of more complex plant secondary metabolites derived from phenylpropanoic acids.
doi_str_mv 10.1186/1475-2859-11-153
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4ccedc6db551486795df33434f91a427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534277616</galeid><doaj_id>oai_doaj_org_article_4ccedc6db551486795df33434f91a427</doaj_id><sourcerecordid>A534277616</sourcerecordid><originalsourceid>FETCH-LOGICAL-b750t-ce1d8c3d6b169112ee5b463594dd891622161f01316c6bab30b7c4c4ba96b3523</originalsourceid><addsrcrecordid>eNqNk82L1DAYxoso7rp69yQFL3romjef7UUYhlUHFgQ_ziFN0k6GTjIm7bLz35tx1nErK0gOCW9-70PyPElRvAR0CVDzd0AFq3DNmgqgAkYeFeen0uN767PiWUobhEDUgjwtzjDBiAvGzwuziKPrnHZqKFsX0t6Pa5tcKkNX7tbW74ddDDvlg9Ol0s6k0vlSleM-huS8LcONjZkwk3a-L6-SXtvo9NqpUofBlWmMyvnnxZNODcm-uJsviu8frr4tP1XXnz-ulovrqhUMjZW2YGpNDG-BNwDYWtZSTlhDjakb4BgDhw4BAa55q1qCWqGppq1qeEsYJhfF6qhrgtrIXXRbFfcyKCd_FULspcrX1YOVVGtrNDctY0BrLhpmOkIooV0DimKRtd4ftXZTu82o9fkqw0x0vuPdWvbhRhLGKCWQBZZHgWzrPwTmOzps5SExeUhMAsgcaFZ5c3eMGH5MNo1y65K2w6C8DVOSgLMxAASh_0BrjCgI2mT09V_oJkzR52wyJTDmiCL4Q_UqO-Z8F_I59UFULhjJJgkOPFOXD1B5GLt1OnjbuVyfNbydNWRmtLdjr6aU5OrrlzmLjqzO7y1F2538AyQPX-Ahx17dD-7U8PvNk5_9xf-h</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1272260401</pqid></control><display><type>article</type><title>Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Kang, Sun-Young ; Choi, Oksik ; Lee, Jae Kyung ; Hwang, Bang Yeon ; Uhm, Tai-Boong ; Hong, Young-Soo</creator><creatorcontrib>Kang, Sun-Young ; Choi, Oksik ; Lee, Jae Kyung ; Hwang, Bang Yeon ; Uhm, Tai-Boong ; Hong, Young-Soo</creatorcontrib><description>The phenylpropanoid metabolites are an extremely diverse group of natural products biosynthesized by plants, fungi, and bacteria. Although these compounds are widely used in human health care and nutrition services, their availability is limited by regional variations, and isolation of single compounds from plants is often difficult. Recent advances in synthetic biology and metabolic engineering have enabled artificial production of plant secondary metabolites in microorganisms. We develop an Escherichia coli system containing an artificial biosynthetic pathway that yields phenylpropanoic acids, such as 4-coumaric acid, caffeic acid, and ferulic acid, from simple carbon sources. These artificial biosynthetic pathways contained a codon-optimized tal gene that improved the productivity of 4-coumaric acid and ferulic acid, but not caffeic acid in a minimal salt medium. These heterologous pathways extended in E. coli that had biosynthesis machinery overproducing tyrosine. Finally, the titers of 4-coumaric acid, caffeic acid, and ferulic acid reached 974 mg/L, 150 mg/L, and 196 mg/L, respectively, in shake flasks after 36-hour cultivation. We achieved one gram per liter scale production of 4-coumaric acid. In addition, maximum titers of 150 mg/L of caffeic acid and 196 mg/L of ferulic acid were achieved. Phenylpropanoic acids, such as 4-coumaric acid, caffeic acid, and ferulic acid, have a great potential for pharmaceutical applications and food ingredients. This work forms a basis for further improvement in production and opens the possibility of microbial synthesis of more complex plant secondary metabolites derived from phenylpropanoic acids.</description><identifier>ISSN: 1475-2859</identifier><identifier>EISSN: 1475-2859</identifier><identifier>DOI: 10.1186/1475-2859-11-153</identifier><identifier>PMID: 23206756</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Biosynthesis ; Biosynthetic Pathways ; Caffeic Acids - metabolism ; Codon ; Coumaric Acids - metabolism ; E coli ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Experiments ; Genes ; Genetic Engineering ; Liquid crystal polymers ; Metabolites ; Microbiology ; Microorganisms ; Phenols ; Physiological aspects ; Plant metabolites ; Propionates ; Tyrosine ; Tyrosine - metabolism</subject><ispartof>Microbial cell factories, 2012-12, Vol.11 (1), p.153-153, Article 153</ispartof><rights>COPYRIGHT 2012 BioMed Central Ltd.</rights><rights>2012 Kang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright ©2012 Kang et al.; licensee BioMed Central Ltd. 2012 Kang et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b750t-ce1d8c3d6b169112ee5b463594dd891622161f01316c6bab30b7c4c4ba96b3523</citedby><cites>FETCH-LOGICAL-b750t-ce1d8c3d6b169112ee5b463594dd891622161f01316c6bab30b7c4c4ba96b3523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554431/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1272260401?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23206756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Sun-Young</creatorcontrib><creatorcontrib>Choi, Oksik</creatorcontrib><creatorcontrib>Lee, Jae Kyung</creatorcontrib><creatorcontrib>Hwang, Bang Yeon</creatorcontrib><creatorcontrib>Uhm, Tai-Boong</creatorcontrib><creatorcontrib>Hong, Young-Soo</creatorcontrib><title>Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain</title><title>Microbial cell factories</title><addtitle>Microb Cell Fact</addtitle><description>The phenylpropanoid metabolites are an extremely diverse group of natural products biosynthesized by plants, fungi, and bacteria. Although these compounds are widely used in human health care and nutrition services, their availability is limited by regional variations, and isolation of single compounds from plants is often difficult. Recent advances in synthetic biology and metabolic engineering have enabled artificial production of plant secondary metabolites in microorganisms. We develop an Escherichia coli system containing an artificial biosynthetic pathway that yields phenylpropanoic acids, such as 4-coumaric acid, caffeic acid, and ferulic acid, from simple carbon sources. These artificial biosynthetic pathways contained a codon-optimized tal gene that improved the productivity of 4-coumaric acid and ferulic acid, but not caffeic acid in a minimal salt medium. These heterologous pathways extended in E. coli that had biosynthesis machinery overproducing tyrosine. Finally, the titers of 4-coumaric acid, caffeic acid, and ferulic acid reached 974 mg/L, 150 mg/L, and 196 mg/L, respectively, in shake flasks after 36-hour cultivation. We achieved one gram per liter scale production of 4-coumaric acid. In addition, maximum titers of 150 mg/L of caffeic acid and 196 mg/L of ferulic acid were achieved. Phenylpropanoic acids, such as 4-coumaric acid, caffeic acid, and ferulic acid, have a great potential for pharmaceutical applications and food ingredients. This work forms a basis for further improvement in production and opens the possibility of microbial synthesis of more complex plant secondary metabolites derived from phenylpropanoic acids.</description><subject>Biosynthesis</subject><subject>Biosynthetic Pathways</subject><subject>Caffeic Acids - metabolism</subject><subject>Codon</subject><subject>Coumaric Acids - metabolism</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Experiments</subject><subject>Genes</subject><subject>Genetic Engineering</subject><subject>Liquid crystal polymers</subject><subject>Metabolites</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Phenols</subject><subject>Physiological aspects</subject><subject>Plant metabolites</subject><subject>Propionates</subject><subject>Tyrosine</subject><subject>Tyrosine - metabolism</subject><issn>1475-2859</issn><issn>1475-2859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk82L1DAYxoso7rp69yQFL3romjef7UUYhlUHFgQ_ziFN0k6GTjIm7bLz35tx1nErK0gOCW9-70PyPElRvAR0CVDzd0AFq3DNmgqgAkYeFeen0uN767PiWUobhEDUgjwtzjDBiAvGzwuziKPrnHZqKFsX0t6Pa5tcKkNX7tbW74ddDDvlg9Ol0s6k0vlSleM-huS8LcONjZkwk3a-L6-SXtvo9NqpUofBlWmMyvnnxZNODcm-uJsviu8frr4tP1XXnz-ulovrqhUMjZW2YGpNDG-BNwDYWtZSTlhDjakb4BgDhw4BAa55q1qCWqGppq1qeEsYJhfF6qhrgtrIXXRbFfcyKCd_FULspcrX1YOVVGtrNDctY0BrLhpmOkIooV0DimKRtd4ftXZTu82o9fkqw0x0vuPdWvbhRhLGKCWQBZZHgWzrPwTmOzps5SExeUhMAsgcaFZ5c3eMGH5MNo1y65K2w6C8DVOSgLMxAASh_0BrjCgI2mT09V_oJkzR52wyJTDmiCL4Q_UqO-Z8F_I59UFULhjJJgkOPFOXD1B5GLt1OnjbuVyfNbydNWRmtLdjr6aU5OrrlzmLjqzO7y1F2538AyQPX-Ahx17dD-7U8PvNk5_9xf-h</recordid><startdate>20121203</startdate><enddate>20121203</enddate><creator>Kang, Sun-Young</creator><creator>Choi, Oksik</creator><creator>Lee, Jae Kyung</creator><creator>Hwang, Bang Yeon</creator><creator>Uhm, Tai-Boong</creator><creator>Hong, Young-Soo</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7QO</scope><scope>M7N</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121203</creationdate><title>Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain</title><author>Kang, Sun-Young ; Choi, Oksik ; Lee, Jae Kyung ; Hwang, Bang Yeon ; Uhm, Tai-Boong ; Hong, Young-Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b750t-ce1d8c3d6b169112ee5b463594dd891622161f01316c6bab30b7c4c4ba96b3523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biosynthesis</topic><topic>Biosynthetic Pathways</topic><topic>Caffeic Acids - metabolism</topic><topic>Codon</topic><topic>Coumaric Acids - metabolism</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Experiments</topic><topic>Genes</topic><topic>Genetic Engineering</topic><topic>Liquid crystal polymers</topic><topic>Metabolites</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Phenols</topic><topic>Physiological aspects</topic><topic>Plant metabolites</topic><topic>Propionates</topic><topic>Tyrosine</topic><topic>Tyrosine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Sun-Young</creatorcontrib><creatorcontrib>Choi, Oksik</creatorcontrib><creatorcontrib>Lee, Jae Kyung</creatorcontrib><creatorcontrib>Hwang, Bang Yeon</creatorcontrib><creatorcontrib>Uhm, Tai-Boong</creatorcontrib><creatorcontrib>Hong, Young-Soo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Microbial cell factories</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Sun-Young</au><au>Choi, Oksik</au><au>Lee, Jae Kyung</au><au>Hwang, Bang Yeon</au><au>Uhm, Tai-Boong</au><au>Hong, Young-Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain</atitle><jtitle>Microbial cell factories</jtitle><addtitle>Microb Cell Fact</addtitle><date>2012-12-03</date><risdate>2012</risdate><volume>11</volume><issue>1</issue><spage>153</spage><epage>153</epage><pages>153-153</pages><artnum>153</artnum><issn>1475-2859</issn><eissn>1475-2859</eissn><abstract>The phenylpropanoid metabolites are an extremely diverse group of natural products biosynthesized by plants, fungi, and bacteria. Although these compounds are widely used in human health care and nutrition services, their availability is limited by regional variations, and isolation of single compounds from plants is often difficult. Recent advances in synthetic biology and metabolic engineering have enabled artificial production of plant secondary metabolites in microorganisms. We develop an Escherichia coli system containing an artificial biosynthetic pathway that yields phenylpropanoic acids, such as 4-coumaric acid, caffeic acid, and ferulic acid, from simple carbon sources. These artificial biosynthetic pathways contained a codon-optimized tal gene that improved the productivity of 4-coumaric acid and ferulic acid, but not caffeic acid in a minimal salt medium. These heterologous pathways extended in E. coli that had biosynthesis machinery overproducing tyrosine. Finally, the titers of 4-coumaric acid, caffeic acid, and ferulic acid reached 974 mg/L, 150 mg/L, and 196 mg/L, respectively, in shake flasks after 36-hour cultivation. We achieved one gram per liter scale production of 4-coumaric acid. In addition, maximum titers of 150 mg/L of caffeic acid and 196 mg/L of ferulic acid were achieved. Phenylpropanoic acids, such as 4-coumaric acid, caffeic acid, and ferulic acid, have a great potential for pharmaceutical applications and food ingredients. This work forms a basis for further improvement in production and opens the possibility of microbial synthesis of more complex plant secondary metabolites derived from phenylpropanoic acids.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>23206756</pmid><doi>10.1186/1475-2859-11-153</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1475-2859
ispartof Microbial cell factories, 2012-12, Vol.11 (1), p.153-153, Article 153
issn 1475-2859
1475-2859
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4ccedc6db551486795df33434f91a427
source Publicly Available Content Database; PubMed Central
subjects Biosynthesis
Biosynthetic Pathways
Caffeic Acids - metabolism
Codon
Coumaric Acids - metabolism
E coli
Enzymes
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Experiments
Genes
Genetic Engineering
Liquid crystal polymers
Metabolites
Microbiology
Microorganisms
Phenols
Physiological aspects
Plant metabolites
Propionates
Tyrosine
Tyrosine - metabolism
title Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20biosynthesis%20of%20phenylpropanoic%20acids%20in%20a%20tyrosine%20overproducing%20Escherichia%20coli%20strain&rft.jtitle=Microbial%20cell%20factories&rft.au=Kang,%20Sun-Young&rft.date=2012-12-03&rft.volume=11&rft.issue=1&rft.spage=153&rft.epage=153&rft.pages=153-153&rft.artnum=153&rft.issn=1475-2859&rft.eissn=1475-2859&rft_id=info:doi/10.1186/1475-2859-11-153&rft_dat=%3Cgale_doaj_%3EA534277616%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b750t-ce1d8c3d6b169112ee5b463594dd891622161f01316c6bab30b7c4c4ba96b3523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1272260401&rft_id=info:pmid/23206756&rft_galeid=A534277616&rfr_iscdi=true