Loading…

Chemical ordering suppresses large-scale electronic phase separation in doped manganites

For strongly correlated oxides, it has been a long-standing issue regarding the role of the chemical ordering of the dopants on the physical properties. Here, using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magneto...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2016-04, Vol.7 (1), p.11260-11260, Article 11260
Main Authors: Zhu, Yinyan, Du, Kai, Niu, Jiebin, Lin, Lingfang, Wei, Wengang, Liu, Hao, Lin, Hanxuan, Zhang, Kai, Yang, Tieying, Kou, Yunfang, Shao, Jian, Gao, Xingyu, Xu, Xiaoshan, Wu, Xiaoshan, Dong, Shuai, Yin, Lifeng, Shen, Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c578t-57d3386808c36d5c2a978eaf344de2d441545923f19e02236494e5fb7fbd257b3
cites cdi_FETCH-LOGICAL-c578t-57d3386808c36d5c2a978eaf344de2d441545923f19e02236494e5fb7fbd257b3
container_end_page 11260
container_issue 1
container_start_page 11260
container_title Nature communications
container_volume 7
creator Zhu, Yinyan
Du, Kai
Niu, Jiebin
Lin, Lingfang
Wei, Wengang
Liu, Hao
Lin, Hanxuan
Zhang, Kai
Yang, Tieying
Kou, Yunfang
Shao, Jian
Gao, Xingyu
Xu, Xiaoshan
Wu, Xiaoshan
Dong, Shuai
Yin, Lifeng
Shen, Jian
description For strongly correlated oxides, it has been a long-standing issue regarding the role of the chemical ordering of the dopants on the physical properties. Here, using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistant (La 1− y Pr y ) 1− x Ca x MnO 3 (LPCMO) system, which has been well known for its large length-scale electronic phase separation phenomena. Our experimental results show that the chemical ordering of Pr leads to marked reduction of the length scale of electronic phase separations. Moreover, compared with the conventional Pr-disordered LPCMO system, the Pr-ordered LPCMO system has a metal–insulator transition that is ∼100 K higher because the ferromagnetic metallic phase is more dominant at all temperatures below the Curie temperature. In oxide materials, cation doping strongly influences the electronic correlations which promote diverse phenomena such as colossal magnetoresistance and superconductivity. Here, the authors use magnetic microscopy to image the effects of spatially ordered doping on electronic phase separation in oxide superlattices.
doi_str_mv 10.1038/ncomms11260
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4cd44a4e9f2a4118813a3e4f4b501cfd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4cd44a4e9f2a4118813a3e4f4b501cfd</doaj_id><sourcerecordid>1779892300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-57d3386808c36d5c2a978eaf344de2d441545923f19e02236494e5fb7fbd257b3</originalsourceid><addsrcrecordid>eNptks-L1DAUgIMo7jLuybsUvAhuNb_apBdBBlcXFrwoeAuvyetMhjapSSv435vdWZdZMZeEvI_vveQ9Ql4y-o5Rod8HG6cpM8Zb-oSccypZzRQXT0_OZ-Qi5wMtS3RMS_mcnHFFG0EVOyc_tnucvIWxislh8mFX5XWeE-aMuRoh7bDOJYwVjmiXFIO31byHjFXGGRIsPobKh8rFGV01QdhB8AvmF-TZAGPGi_t9Q75fffq2_VLffP18vf14U9tG6aVulBNCt5pqK1rXWA6d0giDkNIhd1KyRjYdFwPrkHIuWtlJbIZeDb3jjerFhlwfvS7CwczJT5B-mwje3F3EtDOQFm9HNNIWH0jsBg6SMa2ZAIFykH1DmR1ccX04uua1n9BZDEuC8ZH0cST4vdnFX0Zq3rVaF8Gbe0GKP1fMi5l8tjiOEDCu2TClOl1eU1qxIa__QQ9xTaF81R1FWy4ZL9TbI2VTzDnh8FAMo-Z2AMzJABT61Wn9D-zfdhfg8gjk-bbVmE6S_sf3BzYju_o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779062412</pqid></control><display><type>article</type><title>Chemical ordering suppresses large-scale electronic phase separation in doped manganites</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhu, Yinyan ; Du, Kai ; Niu, Jiebin ; Lin, Lingfang ; Wei, Wengang ; Liu, Hao ; Lin, Hanxuan ; Zhang, Kai ; Yang, Tieying ; Kou, Yunfang ; Shao, Jian ; Gao, Xingyu ; Xu, Xiaoshan ; Wu, Xiaoshan ; Dong, Shuai ; Yin, Lifeng ; Shen, Jian</creator><creatorcontrib>Zhu, Yinyan ; Du, Kai ; Niu, Jiebin ; Lin, Lingfang ; Wei, Wengang ; Liu, Hao ; Lin, Hanxuan ; Zhang, Kai ; Yang, Tieying ; Kou, Yunfang ; Shao, Jian ; Gao, Xingyu ; Xu, Xiaoshan ; Wu, Xiaoshan ; Dong, Shuai ; Yin, Lifeng ; Shen, Jian</creatorcontrib><description>For strongly correlated oxides, it has been a long-standing issue regarding the role of the chemical ordering of the dopants on the physical properties. Here, using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistant (La 1− y Pr y ) 1− x Ca x MnO 3 (LPCMO) system, which has been well known for its large length-scale electronic phase separation phenomena. Our experimental results show that the chemical ordering of Pr leads to marked reduction of the length scale of electronic phase separations. Moreover, compared with the conventional Pr-disordered LPCMO system, the Pr-ordered LPCMO system has a metal–insulator transition that is ∼100 K higher because the ferromagnetic metallic phase is more dominant at all temperatures below the Curie temperature. In oxide materials, cation doping strongly influences the electronic correlations which promote diverse phenomena such as colossal magnetoresistance and superconductivity. Here, the authors use magnetic microscopy to image the effects of spatially ordered doping on electronic phase separation in oxide superlattices.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms11260</identifier><identifier>PMID: 27053071</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/301/119/1003 ; 639/301/119/2793 ; 639/301/119/997 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2016-04, Vol.7 (1), p.11260-11260, Article 11260</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><rights>Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-57d3386808c36d5c2a978eaf344de2d441545923f19e02236494e5fb7fbd257b3</citedby><cites>FETCH-LOGICAL-c578t-57d3386808c36d5c2a978eaf344de2d441545923f19e02236494e5fb7fbd257b3</cites><orcidid>0000-0003-4200-3587 ; 0000-0002-4112-0995 ; 0000-0002-8943-3624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1779062412/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1779062412?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27053071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Yinyan</creatorcontrib><creatorcontrib>Du, Kai</creatorcontrib><creatorcontrib>Niu, Jiebin</creatorcontrib><creatorcontrib>Lin, Lingfang</creatorcontrib><creatorcontrib>Wei, Wengang</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Lin, Hanxuan</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Yang, Tieying</creatorcontrib><creatorcontrib>Kou, Yunfang</creatorcontrib><creatorcontrib>Shao, Jian</creatorcontrib><creatorcontrib>Gao, Xingyu</creatorcontrib><creatorcontrib>Xu, Xiaoshan</creatorcontrib><creatorcontrib>Wu, Xiaoshan</creatorcontrib><creatorcontrib>Dong, Shuai</creatorcontrib><creatorcontrib>Yin, Lifeng</creatorcontrib><creatorcontrib>Shen, Jian</creatorcontrib><title>Chemical ordering suppresses large-scale electronic phase separation in doped manganites</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>For strongly correlated oxides, it has been a long-standing issue regarding the role of the chemical ordering of the dopants on the physical properties. Here, using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistant (La 1− y Pr y ) 1− x Ca x MnO 3 (LPCMO) system, which has been well known for its large length-scale electronic phase separation phenomena. Our experimental results show that the chemical ordering of Pr leads to marked reduction of the length scale of electronic phase separations. Moreover, compared with the conventional Pr-disordered LPCMO system, the Pr-ordered LPCMO system has a metal–insulator transition that is ∼100 K higher because the ferromagnetic metallic phase is more dominant at all temperatures below the Curie temperature. In oxide materials, cation doping strongly influences the electronic correlations which promote diverse phenomena such as colossal magnetoresistance and superconductivity. Here, the authors use magnetic microscopy to image the effects of spatially ordered doping on electronic phase separation in oxide superlattices.</description><subject>142/126</subject><subject>639/301/119/1003</subject><subject>639/301/119/2793</subject><subject>639/301/119/997</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks-L1DAUgIMo7jLuybsUvAhuNb_apBdBBlcXFrwoeAuvyetMhjapSSv435vdWZdZMZeEvI_vveQ9Ql4y-o5Rod8HG6cpM8Zb-oSccypZzRQXT0_OZ-Qi5wMtS3RMS_mcnHFFG0EVOyc_tnucvIWxislh8mFX5XWeE-aMuRoh7bDOJYwVjmiXFIO31byHjFXGGRIsPobKh8rFGV01QdhB8AvmF-TZAGPGi_t9Q75fffq2_VLffP18vf14U9tG6aVulBNCt5pqK1rXWA6d0giDkNIhd1KyRjYdFwPrkHIuWtlJbIZeDb3jjerFhlwfvS7CwczJT5B-mwje3F3EtDOQFm9HNNIWH0jsBg6SMa2ZAIFykH1DmR1ccX04uua1n9BZDEuC8ZH0cST4vdnFX0Zq3rVaF8Gbe0GKP1fMi5l8tjiOEDCu2TClOl1eU1qxIa__QQ9xTaF81R1FWy4ZL9TbI2VTzDnh8FAMo-Z2AMzJABT61Wn9D-zfdhfg8gjk-bbVmE6S_sf3BzYju_o</recordid><startdate>20160407</startdate><enddate>20160407</enddate><creator>Zhu, Yinyan</creator><creator>Du, Kai</creator><creator>Niu, Jiebin</creator><creator>Lin, Lingfang</creator><creator>Wei, Wengang</creator><creator>Liu, Hao</creator><creator>Lin, Hanxuan</creator><creator>Zhang, Kai</creator><creator>Yang, Tieying</creator><creator>Kou, Yunfang</creator><creator>Shao, Jian</creator><creator>Gao, Xingyu</creator><creator>Xu, Xiaoshan</creator><creator>Wu, Xiaoshan</creator><creator>Dong, Shuai</creator><creator>Yin, Lifeng</creator><creator>Shen, Jian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4200-3587</orcidid><orcidid>https://orcid.org/0000-0002-4112-0995</orcidid><orcidid>https://orcid.org/0000-0002-8943-3624</orcidid></search><sort><creationdate>20160407</creationdate><title>Chemical ordering suppresses large-scale electronic phase separation in doped manganites</title><author>Zhu, Yinyan ; Du, Kai ; Niu, Jiebin ; Lin, Lingfang ; Wei, Wengang ; Liu, Hao ; Lin, Hanxuan ; Zhang, Kai ; Yang, Tieying ; Kou, Yunfang ; Shao, Jian ; Gao, Xingyu ; Xu, Xiaoshan ; Wu, Xiaoshan ; Dong, Shuai ; Yin, Lifeng ; Shen, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-57d3386808c36d5c2a978eaf344de2d441545923f19e02236494e5fb7fbd257b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>142/126</topic><topic>639/301/119/1003</topic><topic>639/301/119/2793</topic><topic>639/301/119/997</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yinyan</creatorcontrib><creatorcontrib>Du, Kai</creatorcontrib><creatorcontrib>Niu, Jiebin</creatorcontrib><creatorcontrib>Lin, Lingfang</creatorcontrib><creatorcontrib>Wei, Wengang</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Lin, Hanxuan</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Yang, Tieying</creatorcontrib><creatorcontrib>Kou, Yunfang</creatorcontrib><creatorcontrib>Shao, Jian</creatorcontrib><creatorcontrib>Gao, Xingyu</creatorcontrib><creatorcontrib>Xu, Xiaoshan</creatorcontrib><creatorcontrib>Wu, Xiaoshan</creatorcontrib><creatorcontrib>Dong, Shuai</creatorcontrib><creatorcontrib>Yin, Lifeng</creatorcontrib><creatorcontrib>Shen, Jian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yinyan</au><au>Du, Kai</au><au>Niu, Jiebin</au><au>Lin, Lingfang</au><au>Wei, Wengang</au><au>Liu, Hao</au><au>Lin, Hanxuan</au><au>Zhang, Kai</au><au>Yang, Tieying</au><au>Kou, Yunfang</au><au>Shao, Jian</au><au>Gao, Xingyu</au><au>Xu, Xiaoshan</au><au>Wu, Xiaoshan</au><au>Dong, Shuai</au><au>Yin, Lifeng</au><au>Shen, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical ordering suppresses large-scale electronic phase separation in doped manganites</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-04-07</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>11260</spage><epage>11260</epage><pages>11260-11260</pages><artnum>11260</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>For strongly correlated oxides, it has been a long-standing issue regarding the role of the chemical ordering of the dopants on the physical properties. Here, using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistant (La 1− y Pr y ) 1− x Ca x MnO 3 (LPCMO) system, which has been well known for its large length-scale electronic phase separation phenomena. Our experimental results show that the chemical ordering of Pr leads to marked reduction of the length scale of electronic phase separations. Moreover, compared with the conventional Pr-disordered LPCMO system, the Pr-ordered LPCMO system has a metal–insulator transition that is ∼100 K higher because the ferromagnetic metallic phase is more dominant at all temperatures below the Curie temperature. In oxide materials, cation doping strongly influences the electronic correlations which promote diverse phenomena such as colossal magnetoresistance and superconductivity. Here, the authors use magnetic microscopy to image the effects of spatially ordered doping on electronic phase separation in oxide superlattices.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27053071</pmid><doi>10.1038/ncomms11260</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4200-3587</orcidid><orcidid>https://orcid.org/0000-0002-4112-0995</orcidid><orcidid>https://orcid.org/0000-0002-8943-3624</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2016-04, Vol.7 (1), p.11260-11260, Article 11260
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4cd44a4e9f2a4118813a3e4f4b501cfd
source PubMed Central Free; Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access
subjects 142/126
639/301/119/1003
639/301/119/2793
639/301/119/997
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
title Chemical ordering suppresses large-scale electronic phase separation in doped manganites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T23%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20ordering%20suppresses%20large-scale%20electronic%20phase%20separation%20in%20doped%20manganites&rft.jtitle=Nature%20communications&rft.au=Zhu,%20Yinyan&rft.date=2016-04-07&rft.volume=7&rft.issue=1&rft.spage=11260&rft.epage=11260&rft.pages=11260-11260&rft.artnum=11260&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms11260&rft_dat=%3Cproquest_doaj_%3E1779892300%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c578t-57d3386808c36d5c2a978eaf344de2d441545923f19e02236494e5fb7fbd257b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1779062412&rft_id=info:pmid/27053071&rfr_iscdi=true