Loading…
Chemical ordering suppresses large-scale electronic phase separation in doped manganites
For strongly correlated oxides, it has been a long-standing issue regarding the role of the chemical ordering of the dopants on the physical properties. Here, using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magneto...
Saved in:
Published in: | Nature communications 2016-04, Vol.7 (1), p.11260-11260, Article 11260 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c578t-57d3386808c36d5c2a978eaf344de2d441545923f19e02236494e5fb7fbd257b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c578t-57d3386808c36d5c2a978eaf344de2d441545923f19e02236494e5fb7fbd257b3 |
container_end_page | 11260 |
container_issue | 1 |
container_start_page | 11260 |
container_title | Nature communications |
container_volume | 7 |
creator | Zhu, Yinyan Du, Kai Niu, Jiebin Lin, Lingfang Wei, Wengang Liu, Hao Lin, Hanxuan Zhang, Kai Yang, Tieying Kou, Yunfang Shao, Jian Gao, Xingyu Xu, Xiaoshan Wu, Xiaoshan Dong, Shuai Yin, Lifeng Shen, Jian |
description | For strongly correlated oxides, it has been a long-standing issue regarding the role of the chemical ordering of the dopants on the physical properties. Here, using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistant (La
1−
y
Pr
y
)
1−
x
Ca
x
MnO
3
(LPCMO) system, which has been well known for its large length-scale electronic phase separation phenomena. Our experimental results show that the chemical ordering of Pr leads to marked reduction of the length scale of electronic phase separations. Moreover, compared with the conventional Pr-disordered LPCMO system, the Pr-ordered LPCMO system has a metal–insulator transition that is ∼100 K higher because the ferromagnetic metallic phase is more dominant at all temperatures below the Curie temperature.
In oxide materials, cation doping strongly influences the electronic correlations which promote diverse phenomena such as colossal magnetoresistance and superconductivity. Here, the authors use magnetic microscopy to image the effects of spatially ordered doping on electronic phase separation in oxide superlattices. |
doi_str_mv | 10.1038/ncomms11260 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4cd44a4e9f2a4118813a3e4f4b501cfd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4cd44a4e9f2a4118813a3e4f4b501cfd</doaj_id><sourcerecordid>1779892300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-57d3386808c36d5c2a978eaf344de2d441545923f19e02236494e5fb7fbd257b3</originalsourceid><addsrcrecordid>eNptks-L1DAUgIMo7jLuybsUvAhuNb_apBdBBlcXFrwoeAuvyetMhjapSSv435vdWZdZMZeEvI_vveQ9Ql4y-o5Rod8HG6cpM8Zb-oSccypZzRQXT0_OZ-Qi5wMtS3RMS_mcnHFFG0EVOyc_tnucvIWxislh8mFX5XWeE-aMuRoh7bDOJYwVjmiXFIO31byHjFXGGRIsPobKh8rFGV01QdhB8AvmF-TZAGPGi_t9Q75fffq2_VLffP18vf14U9tG6aVulBNCt5pqK1rXWA6d0giDkNIhd1KyRjYdFwPrkHIuWtlJbIZeDb3jjerFhlwfvS7CwczJT5B-mwje3F3EtDOQFm9HNNIWH0jsBg6SMa2ZAIFykH1DmR1ccX04uua1n9BZDEuC8ZH0cST4vdnFX0Zq3rVaF8Gbe0GKP1fMi5l8tjiOEDCu2TClOl1eU1qxIa__QQ9xTaF81R1FWy4ZL9TbI2VTzDnh8FAMo-Z2AMzJABT61Wn9D-zfdhfg8gjk-bbVmE6S_sf3BzYju_o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779062412</pqid></control><display><type>article</type><title>Chemical ordering suppresses large-scale electronic phase separation in doped manganites</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhu, Yinyan ; Du, Kai ; Niu, Jiebin ; Lin, Lingfang ; Wei, Wengang ; Liu, Hao ; Lin, Hanxuan ; Zhang, Kai ; Yang, Tieying ; Kou, Yunfang ; Shao, Jian ; Gao, Xingyu ; Xu, Xiaoshan ; Wu, Xiaoshan ; Dong, Shuai ; Yin, Lifeng ; Shen, Jian</creator><creatorcontrib>Zhu, Yinyan ; Du, Kai ; Niu, Jiebin ; Lin, Lingfang ; Wei, Wengang ; Liu, Hao ; Lin, Hanxuan ; Zhang, Kai ; Yang, Tieying ; Kou, Yunfang ; Shao, Jian ; Gao, Xingyu ; Xu, Xiaoshan ; Wu, Xiaoshan ; Dong, Shuai ; Yin, Lifeng ; Shen, Jian</creatorcontrib><description>For strongly correlated oxides, it has been a long-standing issue regarding the role of the chemical ordering of the dopants on the physical properties. Here, using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistant (La
1−
y
Pr
y
)
1−
x
Ca
x
MnO
3
(LPCMO) system, which has been well known for its large length-scale electronic phase separation phenomena. Our experimental results show that the chemical ordering of Pr leads to marked reduction of the length scale of electronic phase separations. Moreover, compared with the conventional Pr-disordered LPCMO system, the Pr-ordered LPCMO system has a metal–insulator transition that is ∼100 K higher because the ferromagnetic metallic phase is more dominant at all temperatures below the Curie temperature.
In oxide materials, cation doping strongly influences the electronic correlations which promote diverse phenomena such as colossal magnetoresistance and superconductivity. Here, the authors use magnetic microscopy to image the effects of spatially ordered doping on electronic phase separation in oxide superlattices.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms11260</identifier><identifier>PMID: 27053071</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/301/119/1003 ; 639/301/119/2793 ; 639/301/119/997 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2016-04, Vol.7 (1), p.11260-11260, Article 11260</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><rights>Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-57d3386808c36d5c2a978eaf344de2d441545923f19e02236494e5fb7fbd257b3</citedby><cites>FETCH-LOGICAL-c578t-57d3386808c36d5c2a978eaf344de2d441545923f19e02236494e5fb7fbd257b3</cites><orcidid>0000-0003-4200-3587 ; 0000-0002-4112-0995 ; 0000-0002-8943-3624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1779062412/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1779062412?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27053071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Yinyan</creatorcontrib><creatorcontrib>Du, Kai</creatorcontrib><creatorcontrib>Niu, Jiebin</creatorcontrib><creatorcontrib>Lin, Lingfang</creatorcontrib><creatorcontrib>Wei, Wengang</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Lin, Hanxuan</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Yang, Tieying</creatorcontrib><creatorcontrib>Kou, Yunfang</creatorcontrib><creatorcontrib>Shao, Jian</creatorcontrib><creatorcontrib>Gao, Xingyu</creatorcontrib><creatorcontrib>Xu, Xiaoshan</creatorcontrib><creatorcontrib>Wu, Xiaoshan</creatorcontrib><creatorcontrib>Dong, Shuai</creatorcontrib><creatorcontrib>Yin, Lifeng</creatorcontrib><creatorcontrib>Shen, Jian</creatorcontrib><title>Chemical ordering suppresses large-scale electronic phase separation in doped manganites</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>For strongly correlated oxides, it has been a long-standing issue regarding the role of the chemical ordering of the dopants on the physical properties. Here, using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistant (La
1−
y
Pr
y
)
1−
x
Ca
x
MnO
3
(LPCMO) system, which has been well known for its large length-scale electronic phase separation phenomena. Our experimental results show that the chemical ordering of Pr leads to marked reduction of the length scale of electronic phase separations. Moreover, compared with the conventional Pr-disordered LPCMO system, the Pr-ordered LPCMO system has a metal–insulator transition that is ∼100 K higher because the ferromagnetic metallic phase is more dominant at all temperatures below the Curie temperature.
In oxide materials, cation doping strongly influences the electronic correlations which promote diverse phenomena such as colossal magnetoresistance and superconductivity. Here, the authors use magnetic microscopy to image the effects of spatially ordered doping on electronic phase separation in oxide superlattices.</description><subject>142/126</subject><subject>639/301/119/1003</subject><subject>639/301/119/2793</subject><subject>639/301/119/997</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks-L1DAUgIMo7jLuybsUvAhuNb_apBdBBlcXFrwoeAuvyetMhjapSSv435vdWZdZMZeEvI_vveQ9Ql4y-o5Rod8HG6cpM8Zb-oSccypZzRQXT0_OZ-Qi5wMtS3RMS_mcnHFFG0EVOyc_tnucvIWxislh8mFX5XWeE-aMuRoh7bDOJYwVjmiXFIO31byHjFXGGRIsPobKh8rFGV01QdhB8AvmF-TZAGPGi_t9Q75fffq2_VLffP18vf14U9tG6aVulBNCt5pqK1rXWA6d0giDkNIhd1KyRjYdFwPrkHIuWtlJbIZeDb3jjerFhlwfvS7CwczJT5B-mwje3F3EtDOQFm9HNNIWH0jsBg6SMa2ZAIFykH1DmR1ccX04uua1n9BZDEuC8ZH0cST4vdnFX0Zq3rVaF8Gbe0GKP1fMi5l8tjiOEDCu2TClOl1eU1qxIa__QQ9xTaF81R1FWy4ZL9TbI2VTzDnh8FAMo-Z2AMzJABT61Wn9D-zfdhfg8gjk-bbVmE6S_sf3BzYju_o</recordid><startdate>20160407</startdate><enddate>20160407</enddate><creator>Zhu, Yinyan</creator><creator>Du, Kai</creator><creator>Niu, Jiebin</creator><creator>Lin, Lingfang</creator><creator>Wei, Wengang</creator><creator>Liu, Hao</creator><creator>Lin, Hanxuan</creator><creator>Zhang, Kai</creator><creator>Yang, Tieying</creator><creator>Kou, Yunfang</creator><creator>Shao, Jian</creator><creator>Gao, Xingyu</creator><creator>Xu, Xiaoshan</creator><creator>Wu, Xiaoshan</creator><creator>Dong, Shuai</creator><creator>Yin, Lifeng</creator><creator>Shen, Jian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4200-3587</orcidid><orcidid>https://orcid.org/0000-0002-4112-0995</orcidid><orcidid>https://orcid.org/0000-0002-8943-3624</orcidid></search><sort><creationdate>20160407</creationdate><title>Chemical ordering suppresses large-scale electronic phase separation in doped manganites</title><author>Zhu, Yinyan ; Du, Kai ; Niu, Jiebin ; Lin, Lingfang ; Wei, Wengang ; Liu, Hao ; Lin, Hanxuan ; Zhang, Kai ; Yang, Tieying ; Kou, Yunfang ; Shao, Jian ; Gao, Xingyu ; Xu, Xiaoshan ; Wu, Xiaoshan ; Dong, Shuai ; Yin, Lifeng ; Shen, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-57d3386808c36d5c2a978eaf344de2d441545923f19e02236494e5fb7fbd257b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>142/126</topic><topic>639/301/119/1003</topic><topic>639/301/119/2793</topic><topic>639/301/119/997</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yinyan</creatorcontrib><creatorcontrib>Du, Kai</creatorcontrib><creatorcontrib>Niu, Jiebin</creatorcontrib><creatorcontrib>Lin, Lingfang</creatorcontrib><creatorcontrib>Wei, Wengang</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Lin, Hanxuan</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Yang, Tieying</creatorcontrib><creatorcontrib>Kou, Yunfang</creatorcontrib><creatorcontrib>Shao, Jian</creatorcontrib><creatorcontrib>Gao, Xingyu</creatorcontrib><creatorcontrib>Xu, Xiaoshan</creatorcontrib><creatorcontrib>Wu, Xiaoshan</creatorcontrib><creatorcontrib>Dong, Shuai</creatorcontrib><creatorcontrib>Yin, Lifeng</creatorcontrib><creatorcontrib>Shen, Jian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yinyan</au><au>Du, Kai</au><au>Niu, Jiebin</au><au>Lin, Lingfang</au><au>Wei, Wengang</au><au>Liu, Hao</au><au>Lin, Hanxuan</au><au>Zhang, Kai</au><au>Yang, Tieying</au><au>Kou, Yunfang</au><au>Shao, Jian</au><au>Gao, Xingyu</au><au>Xu, Xiaoshan</au><au>Wu, Xiaoshan</au><au>Dong, Shuai</au><au>Yin, Lifeng</au><au>Shen, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical ordering suppresses large-scale electronic phase separation in doped manganites</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-04-07</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>11260</spage><epage>11260</epage><pages>11260-11260</pages><artnum>11260</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>For strongly correlated oxides, it has been a long-standing issue regarding the role of the chemical ordering of the dopants on the physical properties. Here, using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistant (La
1−
y
Pr
y
)
1−
x
Ca
x
MnO
3
(LPCMO) system, which has been well known for its large length-scale electronic phase separation phenomena. Our experimental results show that the chemical ordering of Pr leads to marked reduction of the length scale of electronic phase separations. Moreover, compared with the conventional Pr-disordered LPCMO system, the Pr-ordered LPCMO system has a metal–insulator transition that is ∼100 K higher because the ferromagnetic metallic phase is more dominant at all temperatures below the Curie temperature.
In oxide materials, cation doping strongly influences the electronic correlations which promote diverse phenomena such as colossal magnetoresistance and superconductivity. Here, the authors use magnetic microscopy to image the effects of spatially ordered doping on electronic phase separation in oxide superlattices.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27053071</pmid><doi>10.1038/ncomms11260</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4200-3587</orcidid><orcidid>https://orcid.org/0000-0002-4112-0995</orcidid><orcidid>https://orcid.org/0000-0002-8943-3624</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2016-04, Vol.7 (1), p.11260-11260, Article 11260 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4cd44a4e9f2a4118813a3e4f4b501cfd |
source | PubMed Central Free; Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 142/126 639/301/119/1003 639/301/119/2793 639/301/119/997 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Chemical ordering suppresses large-scale electronic phase separation in doped manganites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T23%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20ordering%20suppresses%20large-scale%20electronic%20phase%20separation%20in%20doped%20manganites&rft.jtitle=Nature%20communications&rft.au=Zhu,%20Yinyan&rft.date=2016-04-07&rft.volume=7&rft.issue=1&rft.spage=11260&rft.epage=11260&rft.pages=11260-11260&rft.artnum=11260&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms11260&rft_dat=%3Cproquest_doaj_%3E1779892300%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c578t-57d3386808c36d5c2a978eaf344de2d441545923f19e02236494e5fb7fbd257b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1779062412&rft_id=info:pmid/27053071&rfr_iscdi=true |