Loading…

Kaniadakis holographic dark energy and cosmology

We construct a holographic dark energy scenario based on Kaniadakis entropy, which is a generalization of Boltzmann-Gibbs entropy that arises from relativistic statistical theory and is characterized by a single parameter K which quantifies the deviations from standard expressions, and we use the fu...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. C, Particles and fields Particles and fields, 2022-05, Vol.82 (5), p.1-9, Article 449
Main Authors: Drepanou, Niki, Lymperis, Andreas, Saridakis, Emmanuel N., Yesmakhanova, Kuralay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We construct a holographic dark energy scenario based on Kaniadakis entropy, which is a generalization of Boltzmann-Gibbs entropy that arises from relativistic statistical theory and is characterized by a single parameter K which quantifies the deviations from standard expressions, and we use the future event horizon as the Infrared cutoff. We extract the differential equation that determines the evolution of the effective dark energy density parameter, and we provide analytical expressions for the corresponding equation-of-state and deceleration parameters. We show that the universe exhibits the standard thermal history, with the sequence of matter and dark-energy eras, while the transition to acceleration takes place at z ≈ 0.6 . Concerning the dark-energy equation-of-state parameter we show that it can have a rich behavior, being quintessence-like, phantom-like, or experience the phantom-divide crossing in the past or in the future. Finally, in the far future dark energy dominates completely, and the asymptotic value of its equation of state depends on the values of the two model parameters.
ISSN:1434-6052
1434-6044
1434-6052
DOI:10.1140/epjc/s10052-022-10415-9