Loading…
Biochemical response and nutrient uptake of two arbuscular mycorrhiza-inoculated chamomile varieties under different osmotic stresses
Background Water-deficit stress is known as one of the most severe environmental stresses affecting the growth of plants through marked reduction of water uptake, which leads to osmotic stress by lowering water potential. Adopting appropriate varieties using soil microorganisms, such as arbuscular m...
Saved in:
Published in: | Botanical studies 2021-12, Vol.62 (1), p.22-22, Article 22 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
Water-deficit stress is known as one of the most severe environmental stresses affecting the growth of plants through marked reduction of water uptake, which leads to osmotic stress by lowering water potential. Adopting appropriate varieties using soil microorganisms, such as arbuscular mycorrhiza (AM) fungi, can significantly reduce the adverse effects of water deficiency. This study aimed to evaluate the role of
Funneliformis mosseae
on nutrient uptake and certain physiological traits of two chamomile varieties, namely Bodgold (Bod) and Soroksári (Sor) under osmotic stress. For pot culture, a factorial experiment was performed in a completely randomized design with three factors: osmotic stress (PEG 6000) was applied along with Hoagland solution at three levels (0, -0.4 and -0.8 MPa), two German chamomile varieties (Bodgold (Bod) and Soroksari (Sor)), and AM inoculation (
Funneliformis mosseae
species (fungal and non-fungal)) at four replications in perlite substrate.
Results
Osmotic stress significantly reduced the uptake of macro-nutrients (N and P) and micro-nutrients (Fe, Cu, Mn, and Zn) in the shoots and roots. Moreover, the level of osmolytes (total soluble sugars and proline) and the activity of antioxidant enzymes in the shoots of both varieties increased under osmotic stress. Regarding the Sor variety, the level of these compounds was more satisfactory. AM improved plant nutrition uptake and osmolyte contents while enhancing antioxidant enzymes and reducing the adverse effects of osmotic stress. Under osmotic stress, the growth and total dry weight were improved upon AM inoculation.
Conclusions
In general, inoculation of chamomile with AM balanced the uptake of nutrients and increased the level of osmolytes and antioxidant enzymes; hence, it improved plant characteristics under osmotic stress in both varieties. However, it was found to be more effective in reducing stress damages in the Sor variety. |
---|---|
ISSN: | 1817-406X 1999-3110 1999-3110 |
DOI: | 10.1186/s40529-021-00328-3 |