Loading…
Artificial Neurons on Flexible Substrates: A Fully Printed Approach for Neuromorphic Sensing
Printed electronic devices have demonstrated their applicability in complex electronic circuits. There is recent progress in the realization of neuromorphic computing systems (NCSs) to implement basic synaptic functions using solution-processed materials. However, a fully printed neuron is yet to be...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2022-05, Vol.22 (11), p.4000 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c399t-ba078b6ca641e4b6aebc068edbb8acd557fcdbbb6e525dfa51fc53d4fcfa43293 |
---|---|
cites | cdi_FETCH-LOGICAL-c399t-ba078b6ca641e4b6aebc068edbb8acd557fcdbbb6e525dfa51fc53d4fcfa43293 |
container_end_page | |
container_issue | 11 |
container_start_page | 4000 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 22 |
creator | Singaraju, Surya A Weller, Dennis D Gspann, Thurid S Aghassi-Hagmann, Jasmin Tahoori, Mehdi B |
description | Printed electronic devices have demonstrated their applicability in complex electronic circuits. There is recent progress in the realization of neuromorphic computing systems (NCSs) to implement basic synaptic functions using solution-processed materials. However, a fully printed neuron is yet to be realised. We demonstrate a fully printed artificial neuromorphic circuit on flexible polyimide (PI) substrate. Characteristic features of individual components of the printed system were guided by the software training of the NCS. The printing process employs graphene ink for passive structures and In2O3 as active material to print a two-input artificial neuron on PI. To ensure a small area footprint, the thickness of graphene film is tuned to target a resistance and to obtain conductors or resistors. The sheet resistance of the graphene film annealed at 300 °C can be adjusted between 200 Ω and 500 kΩ depending on the number of printed layers. The fully printed devices withstand a minimum of 2% tensile strain for at least 200 cycles of applied stress without any crack formation. The area usage of the printed two-input neuron is 16.25 mm2, with a power consumption of 37.7 mW, a propagation delay of 1 s, and a voltage supply of 2 V, which renders the device a promising candidate for future applications in smart wearable sensors. |
doi_str_mv | 10.3390/s22114000 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4d00aaf189c34701b9b44a47d98b3e05</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4d00aaf189c34701b9b44a47d98b3e05</doaj_id><sourcerecordid>2675610726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-ba078b6ca641e4b6aebc068edbb8acd557fcdbbb6e525dfa51fc53d4fcfa43293</originalsourceid><addsrcrecordid>eNpdkV9rFDEUxYMotlYf_AIS8EUfVvN_Mj4IS3G1UFSovgkhydzsZslOxmRG7LfvbLcurU-55P7u4dx7EHpJyTvOW_K-MkapIIQ8QqdUMLHQjJHH9-oT9KzWLSGMc66fohMulRaK0VP0a1nGGKKPNuGvMJXcV5x7vErwN7oE-GpydSx2hPoBL_FqSukafy-xH6HDy2Eo2foNDrkchne5DJvo8RX0Nfbr5-hJsKnCi7v3DP1cffpx_mVx-e3zxfnycuF5244LZ0mjnfJWCQrCKQvOE6Whc05b30nZBD_XToFksgtW0uAl70TwwQrOWn6GLg66XbZbM5S4s-XaZBvN7Ucua2PnNX0CIzpCrA1Ut56LhlDXOiGsaLpWOw5EzlofD1rD5HbQeejn9dMD0YedPm7MOv8xLdWs0Xszb-4ESv49QR3NLlYPKdke8lQNU41UlDRMzejr_9Btnko_n2pPCd4KLulMvT1QvuRaC4SjGUrMPn9zzH9mX913fyT_Bc5vAHlArCo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674394351</pqid></control><display><type>article</type><title>Artificial Neurons on Flexible Substrates: A Fully Printed Approach for Neuromorphic Sensing</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Singaraju, Surya A ; Weller, Dennis D ; Gspann, Thurid S ; Aghassi-Hagmann, Jasmin ; Tahoori, Mehdi B</creator><creatorcontrib>Singaraju, Surya A ; Weller, Dennis D ; Gspann, Thurid S ; Aghassi-Hagmann, Jasmin ; Tahoori, Mehdi B</creatorcontrib><description>Printed electronic devices have demonstrated their applicability in complex electronic circuits. There is recent progress in the realization of neuromorphic computing systems (NCSs) to implement basic synaptic functions using solution-processed materials. However, a fully printed neuron is yet to be realised. We demonstrate a fully printed artificial neuromorphic circuit on flexible polyimide (PI) substrate. Characteristic features of individual components of the printed system were guided by the software training of the NCS. The printing process employs graphene ink for passive structures and In2O3 as active material to print a two-input artificial neuron on PI. To ensure a small area footprint, the thickness of graphene film is tuned to target a resistance and to obtain conductors or resistors. The sheet resistance of the graphene film annealed at 300 °C can be adjusted between 200 Ω and 500 kΩ depending on the number of printed layers. The fully printed devices withstand a minimum of 2% tensile strain for at least 200 cycles of applied stress without any crack formation. The area usage of the printed two-input neuron is 16.25 mm2, with a power consumption of 37.7 mW, a propagation delay of 1 s, and a voltage supply of 2 V, which renders the device a promising candidate for future applications in smart wearable sensors.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22114000</identifier><identifier>PMID: 35684621</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Ablation ; artificial neural networks ; Conductors ; Design ; Electrolytes ; Electronic circuits ; Electronics ; flexible and functional inks ; Graphene ; Ink jet printers ; Internet of Things ; Medical equipment ; Neural networks ; Neuromorphic computing ; neuromorphic sensing and computing ; Neurons ; Polyvinyl alcohol ; printed electronics ; Sensors ; Smart sensors ; Software ; Tensile strain ; Thickness ; Transistors</subject><ispartof>Sensors (Basel, Switzerland), 2022-05, Vol.22 (11), p.4000</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-ba078b6ca641e4b6aebc068edbb8acd557fcdbbb6e525dfa51fc53d4fcfa43293</citedby><cites>FETCH-LOGICAL-c399t-ba078b6ca641e4b6aebc068edbb8acd557fcdbbb6e525dfa51fc53d4fcfa43293</cites><orcidid>0000-0002-9489-4337 ; 0000-0002-5750-5275 ; 0000-0003-0348-041X ; 0000-0002-8829-5610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2674394351/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2674394351?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35684621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singaraju, Surya A</creatorcontrib><creatorcontrib>Weller, Dennis D</creatorcontrib><creatorcontrib>Gspann, Thurid S</creatorcontrib><creatorcontrib>Aghassi-Hagmann, Jasmin</creatorcontrib><creatorcontrib>Tahoori, Mehdi B</creatorcontrib><title>Artificial Neurons on Flexible Substrates: A Fully Printed Approach for Neuromorphic Sensing</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Printed electronic devices have demonstrated their applicability in complex electronic circuits. There is recent progress in the realization of neuromorphic computing systems (NCSs) to implement basic synaptic functions using solution-processed materials. However, a fully printed neuron is yet to be realised. We demonstrate a fully printed artificial neuromorphic circuit on flexible polyimide (PI) substrate. Characteristic features of individual components of the printed system were guided by the software training of the NCS. The printing process employs graphene ink for passive structures and In2O3 as active material to print a two-input artificial neuron on PI. To ensure a small area footprint, the thickness of graphene film is tuned to target a resistance and to obtain conductors or resistors. The sheet resistance of the graphene film annealed at 300 °C can be adjusted between 200 Ω and 500 kΩ depending on the number of printed layers. The fully printed devices withstand a minimum of 2% tensile strain for at least 200 cycles of applied stress without any crack formation. The area usage of the printed two-input neuron is 16.25 mm2, with a power consumption of 37.7 mW, a propagation delay of 1 s, and a voltage supply of 2 V, which renders the device a promising candidate for future applications in smart wearable sensors.</description><subject>Ablation</subject><subject>artificial neural networks</subject><subject>Conductors</subject><subject>Design</subject><subject>Electrolytes</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>flexible and functional inks</subject><subject>Graphene</subject><subject>Ink jet printers</subject><subject>Internet of Things</subject><subject>Medical equipment</subject><subject>Neural networks</subject><subject>Neuromorphic computing</subject><subject>neuromorphic sensing and computing</subject><subject>Neurons</subject><subject>Polyvinyl alcohol</subject><subject>printed electronics</subject><subject>Sensors</subject><subject>Smart sensors</subject><subject>Software</subject><subject>Tensile strain</subject><subject>Thickness</subject><subject>Transistors</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkV9rFDEUxYMotlYf_AIS8EUfVvN_Mj4IS3G1UFSovgkhydzsZslOxmRG7LfvbLcurU-55P7u4dx7EHpJyTvOW_K-MkapIIQ8QqdUMLHQjJHH9-oT9KzWLSGMc66fohMulRaK0VP0a1nGGKKPNuGvMJXcV5x7vErwN7oE-GpydSx2hPoBL_FqSukafy-xH6HDy2Eo2foNDrkchne5DJvo8RX0Nfbr5-hJsKnCi7v3DP1cffpx_mVx-e3zxfnycuF5244LZ0mjnfJWCQrCKQvOE6Whc05b30nZBD_XToFksgtW0uAl70TwwQrOWn6GLg66XbZbM5S4s-XaZBvN7Ucua2PnNX0CIzpCrA1Ut56LhlDXOiGsaLpWOw5EzlofD1rD5HbQeejn9dMD0YedPm7MOv8xLdWs0Xszb-4ESv49QR3NLlYPKdke8lQNU41UlDRMzejr_9Btnko_n2pPCd4KLulMvT1QvuRaC4SjGUrMPn9zzH9mX913fyT_Bc5vAHlArCo</recordid><startdate>20220525</startdate><enddate>20220525</enddate><creator>Singaraju, Surya A</creator><creator>Weller, Dennis D</creator><creator>Gspann, Thurid S</creator><creator>Aghassi-Hagmann, Jasmin</creator><creator>Tahoori, Mehdi B</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9489-4337</orcidid><orcidid>https://orcid.org/0000-0002-5750-5275</orcidid><orcidid>https://orcid.org/0000-0003-0348-041X</orcidid><orcidid>https://orcid.org/0000-0002-8829-5610</orcidid></search><sort><creationdate>20220525</creationdate><title>Artificial Neurons on Flexible Substrates: A Fully Printed Approach for Neuromorphic Sensing</title><author>Singaraju, Surya A ; Weller, Dennis D ; Gspann, Thurid S ; Aghassi-Hagmann, Jasmin ; Tahoori, Mehdi B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-ba078b6ca641e4b6aebc068edbb8acd557fcdbbb6e525dfa51fc53d4fcfa43293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>artificial neural networks</topic><topic>Conductors</topic><topic>Design</topic><topic>Electrolytes</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>flexible and functional inks</topic><topic>Graphene</topic><topic>Ink jet printers</topic><topic>Internet of Things</topic><topic>Medical equipment</topic><topic>Neural networks</topic><topic>Neuromorphic computing</topic><topic>neuromorphic sensing and computing</topic><topic>Neurons</topic><topic>Polyvinyl alcohol</topic><topic>printed electronics</topic><topic>Sensors</topic><topic>Smart sensors</topic><topic>Software</topic><topic>Tensile strain</topic><topic>Thickness</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singaraju, Surya A</creatorcontrib><creatorcontrib>Weller, Dennis D</creatorcontrib><creatorcontrib>Gspann, Thurid S</creatorcontrib><creatorcontrib>Aghassi-Hagmann, Jasmin</creatorcontrib><creatorcontrib>Tahoori, Mehdi B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ (Directory of Open Access Journals)</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singaraju, Surya A</au><au>Weller, Dennis D</au><au>Gspann, Thurid S</au><au>Aghassi-Hagmann, Jasmin</au><au>Tahoori, Mehdi B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Neurons on Flexible Substrates: A Fully Printed Approach for Neuromorphic Sensing</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2022-05-25</date><risdate>2022</risdate><volume>22</volume><issue>11</issue><spage>4000</spage><pages>4000-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Printed electronic devices have demonstrated their applicability in complex electronic circuits. There is recent progress in the realization of neuromorphic computing systems (NCSs) to implement basic synaptic functions using solution-processed materials. However, a fully printed neuron is yet to be realised. We demonstrate a fully printed artificial neuromorphic circuit on flexible polyimide (PI) substrate. Characteristic features of individual components of the printed system were guided by the software training of the NCS. The printing process employs graphene ink for passive structures and In2O3 as active material to print a two-input artificial neuron on PI. To ensure a small area footprint, the thickness of graphene film is tuned to target a resistance and to obtain conductors or resistors. The sheet resistance of the graphene film annealed at 300 °C can be adjusted between 200 Ω and 500 kΩ depending on the number of printed layers. The fully printed devices withstand a minimum of 2% tensile strain for at least 200 cycles of applied stress without any crack formation. The area usage of the printed two-input neuron is 16.25 mm2, with a power consumption of 37.7 mW, a propagation delay of 1 s, and a voltage supply of 2 V, which renders the device a promising candidate for future applications in smart wearable sensors.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35684621</pmid><doi>10.3390/s22114000</doi><orcidid>https://orcid.org/0000-0002-9489-4337</orcidid><orcidid>https://orcid.org/0000-0002-5750-5275</orcidid><orcidid>https://orcid.org/0000-0003-0348-041X</orcidid><orcidid>https://orcid.org/0000-0002-8829-5610</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2022-05, Vol.22 (11), p.4000 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4d00aaf189c34701b9b44a47d98b3e05 |
source | Publicly Available Content Database; PubMed Central |
subjects | Ablation artificial neural networks Conductors Design Electrolytes Electronic circuits Electronics flexible and functional inks Graphene Ink jet printers Internet of Things Medical equipment Neural networks Neuromorphic computing neuromorphic sensing and computing Neurons Polyvinyl alcohol printed electronics Sensors Smart sensors Software Tensile strain Thickness Transistors |
title | Artificial Neurons on Flexible Substrates: A Fully Printed Approach for Neuromorphic Sensing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Neurons%20on%20Flexible%20Substrates:%20A%20Fully%20Printed%20Approach%20for%20Neuromorphic%20Sensing&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Singaraju,%20Surya%20A&rft.date=2022-05-25&rft.volume=22&rft.issue=11&rft.spage=4000&rft.pages=4000-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22114000&rft_dat=%3Cproquest_doaj_%3E2675610726%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-ba078b6ca641e4b6aebc068edbb8acd557fcdbbb6e525dfa51fc53d4fcfa43293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2674394351&rft_id=info:pmid/35684621&rfr_iscdi=true |