Loading…
Robust in-vehicle heartbeat detection using multimodal signal fusion
A medical check-up during driving enables the early detection of diseases. Heartbeat irregularities indicate possible cardiovascular diseases, which can be determined with continuous health monitoring. Therefore, we develop a redundant sensor system based on electrocardiography (ECG) and photoplethy...
Saved in:
Published in: | Scientific reports 2023-11, Vol.13 (1), p.20864-10, Article 20864 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c541t-7d4a1571c718aa38e81e624f59862fe3b501818fa11eca3c76bd72a8975268363 |
---|---|
cites | cdi_FETCH-LOGICAL-c541t-7d4a1571c718aa38e81e624f59862fe3b501818fa11eca3c76bd72a8975268363 |
container_end_page | 10 |
container_issue | 1 |
container_start_page | 20864 |
container_title | Scientific reports |
container_volume | 13 |
creator | Warnecke, Joana M. Lasenby, Joan Deserno, Thomas M. |
description | A medical check-up during driving enables the early detection of diseases. Heartbeat irregularities indicate possible cardiovascular diseases, which can be determined with continuous health monitoring. Therefore, we develop a redundant sensor system based on electrocardiography (ECG) and photoplethysmography (PPG) sensors attached to the steering wheel, a red, green, and blue (RGB) camera behind the steering wheel. For the video, we integrate the face recognition engine SeetaFace to detect landmarks of face segments continuously. Based on the green channel, we derive colour changes and, subsequently, the heartbeat. We record the ECG, PPG, video, and reference ECG with body electrodes of 19 volunteers during different driving scenarios, each lasting 15 min: city, highway, and countryside. We combine early, signal-based late, and sensor-based late fusion with a hybrid convolutional neural network (CNN) and integrated majority voting to deliver the final heartbeats that we compare to the reference ECG. Based on the measured and the reference heartbeat positions, the usable time was 51.75%, 58.62%, and 55.96% for the driving scenarios city, highway, and countryside, respectively, with the hybrid algorithm and combination of ECG and PPG. In conclusion, the findings suggest that approximately half the driving time can be utilised for in-vehicle heartbeat monitoring. |
doi_str_mv | 10.1038/s41598-023-47484-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4d02416875f246d3a54049642eba5099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4d02416875f246d3a54049642eba5099</doaj_id><sourcerecordid>2894183516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-7d4a1571c718aa38e81e624f59862fe3b501818fa11eca3c76bd72a8975268363</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhSMEolXpH2CBIrFhE_D47RVC5VWpEhKCteUkk1xfJXaxk0rtr8e3KaVlgTdjeY4_z_GpqpdA3gJh-l3mIIxuCGUNV1zz5uZJdUwJFw1llD59sD-qTnPek7IENRzM8-qIaQIUjDiuPn6P7ZqX2ofmCne-m7DeoUtLi26pe1ywW3wM9Zp9GOt5nRY_x95NdfZjKGUojRheVM8GN2U8vasn1c_Pn36cfW0uvn05P_tw0XSCw9KonjsQCjoF2jmmUQNKyofiQ9IBWSsIaNCDA8DOsU7JtlfUaaMElZpJdlKdb9w-ur29TH526dpG5-3tQUyjLaMfTFjeE8pBaiUGymXPnOCEG8kptk4QYwrr_ca6XNsZ-w7Dktz0CPq4E_zOjvHKApGaEsIL4c0dIcVfK-bFzj53OE0uYFyzpdpwRYUBVaSv_5Hu45rKB24q0EzAwR7dVF2KOScc7qcBYg-h2y10W0K3t6Hbm3Lp1UMf91f-RFwEbBPk0gojpr9v_wf7G7Ydtns</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894183516</pqid></control><display><type>article</type><title>Robust in-vehicle heartbeat detection using multimodal signal fusion</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Warnecke, Joana M. ; Lasenby, Joan ; Deserno, Thomas M.</creator><creatorcontrib>Warnecke, Joana M. ; Lasenby, Joan ; Deserno, Thomas M.</creatorcontrib><description>A medical check-up during driving enables the early detection of diseases. Heartbeat irregularities indicate possible cardiovascular diseases, which can be determined with continuous health monitoring. Therefore, we develop a redundant sensor system based on electrocardiography (ECG) and photoplethysmography (PPG) sensors attached to the steering wheel, a red, green, and blue (RGB) camera behind the steering wheel. For the video, we integrate the face recognition engine SeetaFace to detect landmarks of face segments continuously. Based on the green channel, we derive colour changes and, subsequently, the heartbeat. We record the ECG, PPG, video, and reference ECG with body electrodes of 19 volunteers during different driving scenarios, each lasting 15 min: city, highway, and countryside. We combine early, signal-based late, and sensor-based late fusion with a hybrid convolutional neural network (CNN) and integrated majority voting to deliver the final heartbeats that we compare to the reference ECG. Based on the measured and the reference heartbeat positions, the usable time was 51.75%, 58.62%, and 55.96% for the driving scenarios city, highway, and countryside, respectively, with the hybrid algorithm and combination of ECG and PPG. In conclusion, the findings suggest that approximately half the driving time can be utilised for in-vehicle heartbeat monitoring.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-023-47484-z</identifier><identifier>PMID: 38012195</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/985 ; 692/700/459/284 ; Algorithms ; Cardiovascular diseases ; EKG ; Electrocardiography ; Heart diseases ; Heart Rate ; Humanities and Social Sciences ; Humans ; multidisciplinary ; Neural networks ; Neural Networks, Computer ; Pattern recognition ; Photoplethysmography ; Science ; Science (multidisciplinary) ; Signal Processing, Computer-Assisted</subject><ispartof>Scientific reports, 2023-11, Vol.13 (1), p.20864-10, Article 20864</ispartof><rights>The Author(s) 2023. corrected publication 2024</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-7d4a1571c718aa38e81e624f59862fe3b501818fa11eca3c76bd72a8975268363</citedby><cites>FETCH-LOGICAL-c541t-7d4a1571c718aa38e81e624f59862fe3b501818fa11eca3c76bd72a8975268363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2894183516/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2894183516?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38012195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Warnecke, Joana M.</creatorcontrib><creatorcontrib>Lasenby, Joan</creatorcontrib><creatorcontrib>Deserno, Thomas M.</creatorcontrib><title>Robust in-vehicle heartbeat detection using multimodal signal fusion</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>A medical check-up during driving enables the early detection of diseases. Heartbeat irregularities indicate possible cardiovascular diseases, which can be determined with continuous health monitoring. Therefore, we develop a redundant sensor system based on electrocardiography (ECG) and photoplethysmography (PPG) sensors attached to the steering wheel, a red, green, and blue (RGB) camera behind the steering wheel. For the video, we integrate the face recognition engine SeetaFace to detect landmarks of face segments continuously. Based on the green channel, we derive colour changes and, subsequently, the heartbeat. We record the ECG, PPG, video, and reference ECG with body electrodes of 19 volunteers during different driving scenarios, each lasting 15 min: city, highway, and countryside. We combine early, signal-based late, and sensor-based late fusion with a hybrid convolutional neural network (CNN) and integrated majority voting to deliver the final heartbeats that we compare to the reference ECG. Based on the measured and the reference heartbeat positions, the usable time was 51.75%, 58.62%, and 55.96% for the driving scenarios city, highway, and countryside, respectively, with the hybrid algorithm and combination of ECG and PPG. In conclusion, the findings suggest that approximately half the driving time can be utilised for in-vehicle heartbeat monitoring.</description><subject>639/166/985</subject><subject>692/700/459/284</subject><subject>Algorithms</subject><subject>Cardiovascular diseases</subject><subject>EKG</subject><subject>Electrocardiography</subject><subject>Heart diseases</subject><subject>Heart Rate</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Pattern recognition</subject><subject>Photoplethysmography</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Processing, Computer-Assisted</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtv1TAQhSMEolXpH2CBIrFhE_D47RVC5VWpEhKCteUkk1xfJXaxk0rtr8e3KaVlgTdjeY4_z_GpqpdA3gJh-l3mIIxuCGUNV1zz5uZJdUwJFw1llD59sD-qTnPek7IENRzM8-qIaQIUjDiuPn6P7ZqX2ofmCne-m7DeoUtLi26pe1ywW3wM9Zp9GOt5nRY_x95NdfZjKGUojRheVM8GN2U8vasn1c_Pn36cfW0uvn05P_tw0XSCw9KonjsQCjoF2jmmUQNKyofiQ9IBWSsIaNCDA8DOsU7JtlfUaaMElZpJdlKdb9w-ur29TH526dpG5-3tQUyjLaMfTFjeE8pBaiUGymXPnOCEG8kptk4QYwrr_ca6XNsZ-w7Dktz0CPq4E_zOjvHKApGaEsIL4c0dIcVfK-bFzj53OE0uYFyzpdpwRYUBVaSv_5Hu45rKB24q0EzAwR7dVF2KOScc7qcBYg-h2y10W0K3t6Hbm3Lp1UMf91f-RFwEbBPk0gojpr9v_wf7G7Ydtns</recordid><startdate>20231127</startdate><enddate>20231127</enddate><creator>Warnecke, Joana M.</creator><creator>Lasenby, Joan</creator><creator>Deserno, Thomas M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20231127</creationdate><title>Robust in-vehicle heartbeat detection using multimodal signal fusion</title><author>Warnecke, Joana M. ; Lasenby, Joan ; Deserno, Thomas M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-7d4a1571c718aa38e81e624f59862fe3b501818fa11eca3c76bd72a8975268363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/166/985</topic><topic>692/700/459/284</topic><topic>Algorithms</topic><topic>Cardiovascular diseases</topic><topic>EKG</topic><topic>Electrocardiography</topic><topic>Heart diseases</topic><topic>Heart Rate</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Pattern recognition</topic><topic>Photoplethysmography</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Processing, Computer-Assisted</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warnecke, Joana M.</creatorcontrib><creatorcontrib>Lasenby, Joan</creatorcontrib><creatorcontrib>Deserno, Thomas M.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Warnecke, Joana M.</au><au>Lasenby, Joan</au><au>Deserno, Thomas M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust in-vehicle heartbeat detection using multimodal signal fusion</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2023-11-27</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>20864</spage><epage>10</epage><pages>20864-10</pages><artnum>20864</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>A medical check-up during driving enables the early detection of diseases. Heartbeat irregularities indicate possible cardiovascular diseases, which can be determined with continuous health monitoring. Therefore, we develop a redundant sensor system based on electrocardiography (ECG) and photoplethysmography (PPG) sensors attached to the steering wheel, a red, green, and blue (RGB) camera behind the steering wheel. For the video, we integrate the face recognition engine SeetaFace to detect landmarks of face segments continuously. Based on the green channel, we derive colour changes and, subsequently, the heartbeat. We record the ECG, PPG, video, and reference ECG with body electrodes of 19 volunteers during different driving scenarios, each lasting 15 min: city, highway, and countryside. We combine early, signal-based late, and sensor-based late fusion with a hybrid convolutional neural network (CNN) and integrated majority voting to deliver the final heartbeats that we compare to the reference ECG. Based on the measured and the reference heartbeat positions, the usable time was 51.75%, 58.62%, and 55.96% for the driving scenarios city, highway, and countryside, respectively, with the hybrid algorithm and combination of ECG and PPG. In conclusion, the findings suggest that approximately half the driving time can be utilised for in-vehicle heartbeat monitoring.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38012195</pmid><doi>10.1038/s41598-023-47484-z</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2023-11, Vol.13 (1), p.20864-10, Article 20864 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4d02416875f246d3a54049642eba5099 |
source | PubMed (Medline); Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/166/985 692/700/459/284 Algorithms Cardiovascular diseases EKG Electrocardiography Heart diseases Heart Rate Humanities and Social Sciences Humans multidisciplinary Neural networks Neural Networks, Computer Pattern recognition Photoplethysmography Science Science (multidisciplinary) Signal Processing, Computer-Assisted |
title | Robust in-vehicle heartbeat detection using multimodal signal fusion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20in-vehicle%20heartbeat%20detection%20using%20multimodal%20signal%20fusion&rft.jtitle=Scientific%20reports&rft.au=Warnecke,%20Joana%20M.&rft.date=2023-11-27&rft.volume=13&rft.issue=1&rft.spage=20864&rft.epage=10&rft.pages=20864-10&rft.artnum=20864&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-023-47484-z&rft_dat=%3Cproquest_doaj_%3E2894183516%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-7d4a1571c718aa38e81e624f59862fe3b501818fa11eca3c76bd72a8975268363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2894183516&rft_id=info:pmid/38012195&rfr_iscdi=true |