Loading…

Robust in-vehicle heartbeat detection using multimodal signal fusion

A medical check-up during driving enables the early detection of diseases. Heartbeat irregularities indicate possible cardiovascular diseases, which can be determined with continuous health monitoring. Therefore, we develop a redundant sensor system based on electrocardiography (ECG) and photoplethy...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2023-11, Vol.13 (1), p.20864-10, Article 20864
Main Authors: Warnecke, Joana M., Lasenby, Joan, Deserno, Thomas M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-7d4a1571c718aa38e81e624f59862fe3b501818fa11eca3c76bd72a8975268363
cites cdi_FETCH-LOGICAL-c541t-7d4a1571c718aa38e81e624f59862fe3b501818fa11eca3c76bd72a8975268363
container_end_page 10
container_issue 1
container_start_page 20864
container_title Scientific reports
container_volume 13
creator Warnecke, Joana M.
Lasenby, Joan
Deserno, Thomas M.
description A medical check-up during driving enables the early detection of diseases. Heartbeat irregularities indicate possible cardiovascular diseases, which can be determined with continuous health monitoring. Therefore, we develop a redundant sensor system based on electrocardiography (ECG) and photoplethysmography (PPG) sensors attached to the steering wheel, a red, green, and blue (RGB) camera behind the steering wheel. For the video, we integrate the face recognition engine SeetaFace to detect landmarks of face segments continuously. Based on the green channel, we derive colour changes and, subsequently, the heartbeat. We record the ECG, PPG, video, and reference ECG with body electrodes of 19 volunteers during different driving scenarios, each lasting 15 min: city, highway, and countryside. We combine early, signal-based late, and sensor-based late fusion with a hybrid convolutional neural network (CNN) and integrated majority voting to deliver the final heartbeats that we compare to the reference ECG. Based on the measured and the reference heartbeat positions, the usable time was 51.75%, 58.62%, and 55.96% for the driving scenarios city, highway, and countryside, respectively, with the hybrid algorithm and combination of ECG and PPG. In conclusion, the findings suggest that approximately half the driving time can be utilised for in-vehicle heartbeat monitoring.
doi_str_mv 10.1038/s41598-023-47484-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4d02416875f246d3a54049642eba5099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4d02416875f246d3a54049642eba5099</doaj_id><sourcerecordid>2894183516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-7d4a1571c718aa38e81e624f59862fe3b501818fa11eca3c76bd72a8975268363</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhSMEolXpH2CBIrFhE_D47RVC5VWpEhKCteUkk1xfJXaxk0rtr8e3KaVlgTdjeY4_z_GpqpdA3gJh-l3mIIxuCGUNV1zz5uZJdUwJFw1llD59sD-qTnPek7IENRzM8-qIaQIUjDiuPn6P7ZqX2ofmCne-m7DeoUtLi26pe1ywW3wM9Zp9GOt5nRY_x95NdfZjKGUojRheVM8GN2U8vasn1c_Pn36cfW0uvn05P_tw0XSCw9KonjsQCjoF2jmmUQNKyofiQ9IBWSsIaNCDA8DOsU7JtlfUaaMElZpJdlKdb9w-ur29TH526dpG5-3tQUyjLaMfTFjeE8pBaiUGymXPnOCEG8kptk4QYwrr_ca6XNsZ-w7Dktz0CPq4E_zOjvHKApGaEsIL4c0dIcVfK-bFzj53OE0uYFyzpdpwRYUBVaSv_5Hu45rKB24q0EzAwR7dVF2KOScc7qcBYg-h2y10W0K3t6Hbm3Lp1UMf91f-RFwEbBPk0gojpr9v_wf7G7Ydtns</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894183516</pqid></control><display><type>article</type><title>Robust in-vehicle heartbeat detection using multimodal signal fusion</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Warnecke, Joana M. ; Lasenby, Joan ; Deserno, Thomas M.</creator><creatorcontrib>Warnecke, Joana M. ; Lasenby, Joan ; Deserno, Thomas M.</creatorcontrib><description>A medical check-up during driving enables the early detection of diseases. Heartbeat irregularities indicate possible cardiovascular diseases, which can be determined with continuous health monitoring. Therefore, we develop a redundant sensor system based on electrocardiography (ECG) and photoplethysmography (PPG) sensors attached to the steering wheel, a red, green, and blue (RGB) camera behind the steering wheel. For the video, we integrate the face recognition engine SeetaFace to detect landmarks of face segments continuously. Based on the green channel, we derive colour changes and, subsequently, the heartbeat. We record the ECG, PPG, video, and reference ECG with body electrodes of 19 volunteers during different driving scenarios, each lasting 15 min: city, highway, and countryside. We combine early, signal-based late, and sensor-based late fusion with a hybrid convolutional neural network (CNN) and integrated majority voting to deliver the final heartbeats that we compare to the reference ECG. Based on the measured and the reference heartbeat positions, the usable time was 51.75%, 58.62%, and 55.96% for the driving scenarios city, highway, and countryside, respectively, with the hybrid algorithm and combination of ECG and PPG. In conclusion, the findings suggest that approximately half the driving time can be utilised for in-vehicle heartbeat monitoring.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-023-47484-z</identifier><identifier>PMID: 38012195</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/985 ; 692/700/459/284 ; Algorithms ; Cardiovascular diseases ; EKG ; Electrocardiography ; Heart diseases ; Heart Rate ; Humanities and Social Sciences ; Humans ; multidisciplinary ; Neural networks ; Neural Networks, Computer ; Pattern recognition ; Photoplethysmography ; Science ; Science (multidisciplinary) ; Signal Processing, Computer-Assisted</subject><ispartof>Scientific reports, 2023-11, Vol.13 (1), p.20864-10, Article 20864</ispartof><rights>The Author(s) 2023. corrected publication 2024</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-7d4a1571c718aa38e81e624f59862fe3b501818fa11eca3c76bd72a8975268363</citedby><cites>FETCH-LOGICAL-c541t-7d4a1571c718aa38e81e624f59862fe3b501818fa11eca3c76bd72a8975268363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2894183516/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2894183516?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38012195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Warnecke, Joana M.</creatorcontrib><creatorcontrib>Lasenby, Joan</creatorcontrib><creatorcontrib>Deserno, Thomas M.</creatorcontrib><title>Robust in-vehicle heartbeat detection using multimodal signal fusion</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>A medical check-up during driving enables the early detection of diseases. Heartbeat irregularities indicate possible cardiovascular diseases, which can be determined with continuous health monitoring. Therefore, we develop a redundant sensor system based on electrocardiography (ECG) and photoplethysmography (PPG) sensors attached to the steering wheel, a red, green, and blue (RGB) camera behind the steering wheel. For the video, we integrate the face recognition engine SeetaFace to detect landmarks of face segments continuously. Based on the green channel, we derive colour changes and, subsequently, the heartbeat. We record the ECG, PPG, video, and reference ECG with body electrodes of 19 volunteers during different driving scenarios, each lasting 15 min: city, highway, and countryside. We combine early, signal-based late, and sensor-based late fusion with a hybrid convolutional neural network (CNN) and integrated majority voting to deliver the final heartbeats that we compare to the reference ECG. Based on the measured and the reference heartbeat positions, the usable time was 51.75%, 58.62%, and 55.96% for the driving scenarios city, highway, and countryside, respectively, with the hybrid algorithm and combination of ECG and PPG. In conclusion, the findings suggest that approximately half the driving time can be utilised for in-vehicle heartbeat monitoring.</description><subject>639/166/985</subject><subject>692/700/459/284</subject><subject>Algorithms</subject><subject>Cardiovascular diseases</subject><subject>EKG</subject><subject>Electrocardiography</subject><subject>Heart diseases</subject><subject>Heart Rate</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Pattern recognition</subject><subject>Photoplethysmography</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Processing, Computer-Assisted</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtv1TAQhSMEolXpH2CBIrFhE_D47RVC5VWpEhKCteUkk1xfJXaxk0rtr8e3KaVlgTdjeY4_z_GpqpdA3gJh-l3mIIxuCGUNV1zz5uZJdUwJFw1llD59sD-qTnPek7IENRzM8-qIaQIUjDiuPn6P7ZqX2ofmCne-m7DeoUtLi26pe1ywW3wM9Zp9GOt5nRY_x95NdfZjKGUojRheVM8GN2U8vasn1c_Pn36cfW0uvn05P_tw0XSCw9KonjsQCjoF2jmmUQNKyofiQ9IBWSsIaNCDA8DOsU7JtlfUaaMElZpJdlKdb9w-ur29TH526dpG5-3tQUyjLaMfTFjeE8pBaiUGymXPnOCEG8kptk4QYwrr_ca6XNsZ-w7Dktz0CPq4E_zOjvHKApGaEsIL4c0dIcVfK-bFzj53OE0uYFyzpdpwRYUBVaSv_5Hu45rKB24q0EzAwR7dVF2KOScc7qcBYg-h2y10W0K3t6Hbm3Lp1UMf91f-RFwEbBPk0gojpr9v_wf7G7Ydtns</recordid><startdate>20231127</startdate><enddate>20231127</enddate><creator>Warnecke, Joana M.</creator><creator>Lasenby, Joan</creator><creator>Deserno, Thomas M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20231127</creationdate><title>Robust in-vehicle heartbeat detection using multimodal signal fusion</title><author>Warnecke, Joana M. ; Lasenby, Joan ; Deserno, Thomas M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-7d4a1571c718aa38e81e624f59862fe3b501818fa11eca3c76bd72a8975268363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/166/985</topic><topic>692/700/459/284</topic><topic>Algorithms</topic><topic>Cardiovascular diseases</topic><topic>EKG</topic><topic>Electrocardiography</topic><topic>Heart diseases</topic><topic>Heart Rate</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Pattern recognition</topic><topic>Photoplethysmography</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Processing, Computer-Assisted</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warnecke, Joana M.</creatorcontrib><creatorcontrib>Lasenby, Joan</creatorcontrib><creatorcontrib>Deserno, Thomas M.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Warnecke, Joana M.</au><au>Lasenby, Joan</au><au>Deserno, Thomas M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust in-vehicle heartbeat detection using multimodal signal fusion</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2023-11-27</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>20864</spage><epage>10</epage><pages>20864-10</pages><artnum>20864</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>A medical check-up during driving enables the early detection of diseases. Heartbeat irregularities indicate possible cardiovascular diseases, which can be determined with continuous health monitoring. Therefore, we develop a redundant sensor system based on electrocardiography (ECG) and photoplethysmography (PPG) sensors attached to the steering wheel, a red, green, and blue (RGB) camera behind the steering wheel. For the video, we integrate the face recognition engine SeetaFace to detect landmarks of face segments continuously. Based on the green channel, we derive colour changes and, subsequently, the heartbeat. We record the ECG, PPG, video, and reference ECG with body electrodes of 19 volunteers during different driving scenarios, each lasting 15 min: city, highway, and countryside. We combine early, signal-based late, and sensor-based late fusion with a hybrid convolutional neural network (CNN) and integrated majority voting to deliver the final heartbeats that we compare to the reference ECG. Based on the measured and the reference heartbeat positions, the usable time was 51.75%, 58.62%, and 55.96% for the driving scenarios city, highway, and countryside, respectively, with the hybrid algorithm and combination of ECG and PPG. In conclusion, the findings suggest that approximately half the driving time can be utilised for in-vehicle heartbeat monitoring.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38012195</pmid><doi>10.1038/s41598-023-47484-z</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2023-11, Vol.13 (1), p.20864-10, Article 20864
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4d02416875f246d3a54049642eba5099
source PubMed (Medline); Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/166/985
692/700/459/284
Algorithms
Cardiovascular diseases
EKG
Electrocardiography
Heart diseases
Heart Rate
Humanities and Social Sciences
Humans
multidisciplinary
Neural networks
Neural Networks, Computer
Pattern recognition
Photoplethysmography
Science
Science (multidisciplinary)
Signal Processing, Computer-Assisted
title Robust in-vehicle heartbeat detection using multimodal signal fusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20in-vehicle%20heartbeat%20detection%20using%20multimodal%20signal%20fusion&rft.jtitle=Scientific%20reports&rft.au=Warnecke,%20Joana%20M.&rft.date=2023-11-27&rft.volume=13&rft.issue=1&rft.spage=20864&rft.epage=10&rft.pages=20864-10&rft.artnum=20864&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-023-47484-z&rft_dat=%3Cproquest_doaj_%3E2894183516%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-7d4a1571c718aa38e81e624f59862fe3b501818fa11eca3c76bd72a8975268363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2894183516&rft_id=info:pmid/38012195&rfr_iscdi=true