Loading…
A Gaussian-Process-Based Global Sensitivity Analysis of Cultivar Trait Parameters in APSIM-Sugar Model: Special Reference to Environmental and Management Conditions in Thailand
Process-based crop models are advantageous for the identification of management strategies to cope with both temporal and spatial variability of sugarcane yield. However, global optimization of such models is often computationally expensive. Therefore, we performed global sensitivity analysis based...
Saved in:
Published in: | Agronomy (Basel) 2020-07, Vol.10 (7), p.984 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c445t-42dc0aacc04a784f31946e4cee01287df1a19412d9292b4f5eff22a0a7b03c2a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c445t-42dc0aacc04a784f31946e4cee01287df1a19412d9292b4f5eff22a0a7b03c2a3 |
container_end_page | |
container_issue | 7 |
container_start_page | 984 |
container_title | Agronomy (Basel) |
container_volume | 10 |
creator | Bandara, W. B. M. A. C. Sakai, Kazuhito Nakandakari, Tamotsu Kapetch, Preecha Rathnappriya, R. H. K. |
description | Process-based crop models are advantageous for the identification of management strategies to cope with both temporal and spatial variability of sugarcane yield. However, global optimization of such models is often computationally expensive. Therefore, we performed global sensitivity analysis based on Gaussian process emulation to evaluate the sensitivity of cane dry weight to trait parameters implemented in the Agricultural Productions System Simulator (APSIM)-Sugar model under selected environmental and management conditions in Khon Kaen (KK), Thailand. Emulators modeled 30 years, three soil types and irrigated or rainfed conditions, and emulator performance was investigated. rue, green_leaf_no, transp_eff_cf, tt_emerg_to_begcane and cane_fraction were identified as the most influential parameters and together they explained more than 90% of total variance on the simulator output. Moreover, results indicate that the sensitivity of sugarcane yield to the most influential parameters is affected by water stress conditions and nitrogen stress. Our findings can be used to improve the efficiency and accuracy of modeling and to identify appropriate management strategies to address temporal and spatial variability of sugarcane yield in KK. |
doi_str_mv | 10.3390/agronomy10070984 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4d1bec3506014da599d09dc1fffa03bd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4d1bec3506014da599d09dc1fffa03bd</doaj_id><sourcerecordid>2423632289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-42dc0aacc04a784f31946e4cee01287df1a19412d9292b4f5eff22a0a7b03c2a3</originalsourceid><addsrcrecordid>eNpdkU2PEzEMhkcIJFbL3jlG4jzgfExnwq1US6m0FRUt55EncUqqaVKS6Ur9V_xEsluEEL7Yev3qsWVX1VsO76XU8AH3KYZ4vHCAFnSnXlQ3AlpZK6mbl__Ur6u7nA9QQnPZQXtT_ZqzJZ5z9hjqTYqGcq4_YSbLlmMccGRbCtlP_tFPFzYPOF6yzyw6tjiPRcXEdgn9xDaY8EgTpcx8YPPNdrWut-d96a-jpfEj257I-ML7Ro4SBUNsiuw-PPqy-ZHCVFoYLFtjwD09CWwRgy2TY3hG7n6gH4vjTfXK4Zjp7k--rb5_vt8tvtQPX5erxfyhNko1U62ENYBoDChsO-Uk12pGyhABF11rHceicGG10GJQriHnhEDAdgBpBMrbanXl2oiH_pT8EdOlj-j7ZyGmfY9p8makXlk-kJENzIAri43WFrQ13DmHIAdbWO-urFOKP8-Up_4Qz6kcM_dCCTmTQnS6uODqMinmnMj9ncqhf3pz__-b5W_Emp-S</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423632289</pqid></control><display><type>article</type><title>A Gaussian-Process-Based Global Sensitivity Analysis of Cultivar Trait Parameters in APSIM-Sugar Model: Special Reference to Environmental and Management Conditions in Thailand</title><source>Publicly Available Content (ProQuest)</source><creator>Bandara, W. B. M. A. C. ; Sakai, Kazuhito ; Nakandakari, Tamotsu ; Kapetch, Preecha ; Rathnappriya, R. H. K.</creator><creatorcontrib>Bandara, W. B. M. A. C. ; Sakai, Kazuhito ; Nakandakari, Tamotsu ; Kapetch, Preecha ; Rathnappriya, R. H. K.</creatorcontrib><description>Process-based crop models are advantageous for the identification of management strategies to cope with both temporal and spatial variability of sugarcane yield. However, global optimization of such models is often computationally expensive. Therefore, we performed global sensitivity analysis based on Gaussian process emulation to evaluate the sensitivity of cane dry weight to trait parameters implemented in the Agricultural Productions System Simulator (APSIM)-Sugar model under selected environmental and management conditions in Khon Kaen (KK), Thailand. Emulators modeled 30 years, three soil types and irrigated or rainfed conditions, and emulator performance was investigated. rue, green_leaf_no, transp_eff_cf, tt_emerg_to_begcane and cane_fraction were identified as the most influential parameters and together they explained more than 90% of total variance on the simulator output. Moreover, results indicate that the sensitivity of sugarcane yield to the most influential parameters is affected by water stress conditions and nitrogen stress. Our findings can be used to improve the efficiency and accuracy of modeling and to identify appropriate management strategies to address temporal and spatial variability of sugarcane yield in KK.</description><identifier>ISSN: 2073-4395</identifier><identifier>EISSN: 2073-4395</identifier><identifier>DOI: 10.3390/agronomy10070984</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural management ; Agricultural production ; APSIM ; Biomass ; Climate change ; Computer simulation ; Cultivars ; Emulators ; Environmental management ; Gaussian process ; Gaussian process emulation ; Global optimization ; global sensitivity analysis ; Mathematical models ; Model accuracy ; Parameter identification ; Parameter sensitivity ; Sensitivity analysis ; Simulation ; Soil investigations ; Soil types ; Soils ; Studies ; Sucrose ; Sugar ; Sugarcane ; Variability ; Water shortages ; Water stress ; Water supply</subject><ispartof>Agronomy (Basel), 2020-07, Vol.10 (7), p.984</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-42dc0aacc04a784f31946e4cee01287df1a19412d9292b4f5eff22a0a7b03c2a3</citedby><cites>FETCH-LOGICAL-c445t-42dc0aacc04a784f31946e4cee01287df1a19412d9292b4f5eff22a0a7b03c2a3</cites><orcidid>0000-0001-6980-1680 ; 0000-0001-7382-4375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2423632289/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2423632289?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Bandara, W. B. M. A. C.</creatorcontrib><creatorcontrib>Sakai, Kazuhito</creatorcontrib><creatorcontrib>Nakandakari, Tamotsu</creatorcontrib><creatorcontrib>Kapetch, Preecha</creatorcontrib><creatorcontrib>Rathnappriya, R. H. K.</creatorcontrib><title>A Gaussian-Process-Based Global Sensitivity Analysis of Cultivar Trait Parameters in APSIM-Sugar Model: Special Reference to Environmental and Management Conditions in Thailand</title><title>Agronomy (Basel)</title><description>Process-based crop models are advantageous for the identification of management strategies to cope with both temporal and spatial variability of sugarcane yield. However, global optimization of such models is often computationally expensive. Therefore, we performed global sensitivity analysis based on Gaussian process emulation to evaluate the sensitivity of cane dry weight to trait parameters implemented in the Agricultural Productions System Simulator (APSIM)-Sugar model under selected environmental and management conditions in Khon Kaen (KK), Thailand. Emulators modeled 30 years, three soil types and irrigated or rainfed conditions, and emulator performance was investigated. rue, green_leaf_no, transp_eff_cf, tt_emerg_to_begcane and cane_fraction were identified as the most influential parameters and together they explained more than 90% of total variance on the simulator output. Moreover, results indicate that the sensitivity of sugarcane yield to the most influential parameters is affected by water stress conditions and nitrogen stress. Our findings can be used to improve the efficiency and accuracy of modeling and to identify appropriate management strategies to address temporal and spatial variability of sugarcane yield in KK.</description><subject>Agricultural management</subject><subject>Agricultural production</subject><subject>APSIM</subject><subject>Biomass</subject><subject>Climate change</subject><subject>Computer simulation</subject><subject>Cultivars</subject><subject>Emulators</subject><subject>Environmental management</subject><subject>Gaussian process</subject><subject>Gaussian process emulation</subject><subject>Global optimization</subject><subject>global sensitivity analysis</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Parameter identification</subject><subject>Parameter sensitivity</subject><subject>Sensitivity analysis</subject><subject>Simulation</subject><subject>Soil investigations</subject><subject>Soil types</subject><subject>Soils</subject><subject>Studies</subject><subject>Sucrose</subject><subject>Sugar</subject><subject>Sugarcane</subject><subject>Variability</subject><subject>Water shortages</subject><subject>Water stress</subject><subject>Water supply</subject><issn>2073-4395</issn><issn>2073-4395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU2PEzEMhkcIJFbL3jlG4jzgfExnwq1US6m0FRUt55EncUqqaVKS6Ur9V_xEsluEEL7Yev3qsWVX1VsO76XU8AH3KYZ4vHCAFnSnXlQ3AlpZK6mbl__Ur6u7nA9QQnPZQXtT_ZqzJZ5z9hjqTYqGcq4_YSbLlmMccGRbCtlP_tFPFzYPOF6yzyw6tjiPRcXEdgn9xDaY8EgTpcx8YPPNdrWut-d96a-jpfEj257I-ML7Ro4SBUNsiuw-PPqy-ZHCVFoYLFtjwD09CWwRgy2TY3hG7n6gH4vjTfXK4Zjp7k--rb5_vt8tvtQPX5erxfyhNko1U62ENYBoDChsO-Uk12pGyhABF11rHceicGG10GJQriHnhEDAdgBpBMrbanXl2oiH_pT8EdOlj-j7ZyGmfY9p8makXlk-kJENzIAri43WFrQ13DmHIAdbWO-urFOKP8-Up_4Qz6kcM_dCCTmTQnS6uODqMinmnMj9ncqhf3pz__-b5W_Emp-S</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Bandara, W. B. M. A. C.</creator><creator>Sakai, Kazuhito</creator><creator>Nakandakari, Tamotsu</creator><creator>Kapetch, Preecha</creator><creator>Rathnappriya, R. H. K.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PATMY</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6980-1680</orcidid><orcidid>https://orcid.org/0000-0001-7382-4375</orcidid></search><sort><creationdate>20200701</creationdate><title>A Gaussian-Process-Based Global Sensitivity Analysis of Cultivar Trait Parameters in APSIM-Sugar Model: Special Reference to Environmental and Management Conditions in Thailand</title><author>Bandara, W. B. M. A. C. ; Sakai, Kazuhito ; Nakandakari, Tamotsu ; Kapetch, Preecha ; Rathnappriya, R. H. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-42dc0aacc04a784f31946e4cee01287df1a19412d9292b4f5eff22a0a7b03c2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural management</topic><topic>Agricultural production</topic><topic>APSIM</topic><topic>Biomass</topic><topic>Climate change</topic><topic>Computer simulation</topic><topic>Cultivars</topic><topic>Emulators</topic><topic>Environmental management</topic><topic>Gaussian process</topic><topic>Gaussian process emulation</topic><topic>Global optimization</topic><topic>global sensitivity analysis</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Parameter identification</topic><topic>Parameter sensitivity</topic><topic>Sensitivity analysis</topic><topic>Simulation</topic><topic>Soil investigations</topic><topic>Soil types</topic><topic>Soils</topic><topic>Studies</topic><topic>Sucrose</topic><topic>Sugar</topic><topic>Sugarcane</topic><topic>Variability</topic><topic>Water shortages</topic><topic>Water stress</topic><topic>Water supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bandara, W. B. M. A. C.</creatorcontrib><creatorcontrib>Sakai, Kazuhito</creatorcontrib><creatorcontrib>Nakandakari, Tamotsu</creatorcontrib><creatorcontrib>Kapetch, Preecha</creatorcontrib><creatorcontrib>Rathnappriya, R. H. K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Agriculture & Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Agronomy (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bandara, W. B. M. A. C.</au><au>Sakai, Kazuhito</au><au>Nakandakari, Tamotsu</au><au>Kapetch, Preecha</au><au>Rathnappriya, R. H. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Gaussian-Process-Based Global Sensitivity Analysis of Cultivar Trait Parameters in APSIM-Sugar Model: Special Reference to Environmental and Management Conditions in Thailand</atitle><jtitle>Agronomy (Basel)</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>10</volume><issue>7</issue><spage>984</spage><pages>984-</pages><issn>2073-4395</issn><eissn>2073-4395</eissn><abstract>Process-based crop models are advantageous for the identification of management strategies to cope with both temporal and spatial variability of sugarcane yield. However, global optimization of such models is often computationally expensive. Therefore, we performed global sensitivity analysis based on Gaussian process emulation to evaluate the sensitivity of cane dry weight to trait parameters implemented in the Agricultural Productions System Simulator (APSIM)-Sugar model under selected environmental and management conditions in Khon Kaen (KK), Thailand. Emulators modeled 30 years, three soil types and irrigated or rainfed conditions, and emulator performance was investigated. rue, green_leaf_no, transp_eff_cf, tt_emerg_to_begcane and cane_fraction were identified as the most influential parameters and together they explained more than 90% of total variance on the simulator output. Moreover, results indicate that the sensitivity of sugarcane yield to the most influential parameters is affected by water stress conditions and nitrogen stress. Our findings can be used to improve the efficiency and accuracy of modeling and to identify appropriate management strategies to address temporal and spatial variability of sugarcane yield in KK.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agronomy10070984</doi><orcidid>https://orcid.org/0000-0001-6980-1680</orcidid><orcidid>https://orcid.org/0000-0001-7382-4375</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4395 |
ispartof | Agronomy (Basel), 2020-07, Vol.10 (7), p.984 |
issn | 2073-4395 2073-4395 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4d1bec3506014da599d09dc1fffa03bd |
source | Publicly Available Content (ProQuest) |
subjects | Agricultural management Agricultural production APSIM Biomass Climate change Computer simulation Cultivars Emulators Environmental management Gaussian process Gaussian process emulation Global optimization global sensitivity analysis Mathematical models Model accuracy Parameter identification Parameter sensitivity Sensitivity analysis Simulation Soil investigations Soil types Soils Studies Sucrose Sugar Sugarcane Variability Water shortages Water stress Water supply |
title | A Gaussian-Process-Based Global Sensitivity Analysis of Cultivar Trait Parameters in APSIM-Sugar Model: Special Reference to Environmental and Management Conditions in Thailand |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T04%3A39%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Gaussian-Process-Based%20Global%20Sensitivity%20Analysis%20of%20Cultivar%20Trait%20Parameters%20in%20APSIM-Sugar%20Model:%20Special%20Reference%20to%20Environmental%20and%20Management%20Conditions%20in%20Thailand&rft.jtitle=Agronomy%20(Basel)&rft.au=Bandara,%20W.%20B.%20M.%20A.%20C.&rft.date=2020-07-01&rft.volume=10&rft.issue=7&rft.spage=984&rft.pages=984-&rft.issn=2073-4395&rft.eissn=2073-4395&rft_id=info:doi/10.3390/agronomy10070984&rft_dat=%3Cproquest_doaj_%3E2423632289%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-42dc0aacc04a784f31946e4cee01287df1a19412d9292b4f5eff22a0a7b03c2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2423632289&rft_id=info:pmid/&rfr_iscdi=true |