Loading…

Metabolites of soil microorganisms modulate amyloid β production in Alzheimer’s neurons

Microbial flora is investigated to be related with neuropathological conditions in Alzheimer’s disease (AD), and is attracting attention as a drug discovery resource. However, the relevance between the soil microbiota and the pathological condition has not been fully clarified due to the difficulty...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2022-03, Vol.12 (1), p.2690-2690, Article 2690
Main Authors: Kondo, Takayuki, Yamamoto, Tsuyoshi, Okayama, Kaoru, Narumi, Hideki, Inoue, Haruhisa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microbial flora is investigated to be related with neuropathological conditions in Alzheimer’s disease (AD), and is attracting attention as a drug discovery resource. However, the relevance between the soil microbiota and the pathological condition has not been fully clarified due to the difficulty in isolation culture and the component complexity. In this study, we established a library of secondly metabolites produced in microorganism to investigate the potential effect of microorganisms on the production of amyloid β (Aβ), one of the most representative pathogens of AD. We conducted a library screening to quantify Aβ and neuronal toxicity by using cortical neurons from human induced pluripotent stem cells (iPSCs) of AD patients after adding secondary metabolites. Screening results and following assessment of dose-dependency identified Verrucarin A, produced in Myrothecium spp., showed 80% decrease in Aβ production. Furthermore, addition of Mer-A2026A, produced in Streptomyces pactum , showed increase in Aβ42/40 ratio at the low concentration, and decrease in Aβ production at the higher concentration. As a result, established library and iPSC-based phenotyping assay clarified a direct link between Aβ production and soil microorganisms. These results suggest that Aβ-microorganism interaction may provide insight into the AD pathophysiology with potential therapeutics.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-06513-z