Loading…

Directing cellular responses in a nanocomposite 3D matrix for tissue regeneration with nanoparticle-mediated drug delivery

Hydrogels play an important role in tissue engineering due to their native extracellular matrix-like characteristics, but they are insufficient in providing the necessary stimuli to support tissue formation. Efforts to integrate bioactive cues directly into hydrogels are hindered by incompatibility...

Full description

Saved in:
Bibliographic Details
Published in:Materials today bio 2023-12, Vol.23, p.100865-100865, Article 100865
Main Authors: Özliseli, Ezgi, Şanlıdağ, Sami, Süren, Behice, Mahran, Alaa, Parikainen, Marjaana, Sahlgren, Cecilia, Rosenholm, Jessica M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c503t-24339413203159378c80fb63e8becf64a55129d9ba4692c999aadf4950a637973
cites cdi_FETCH-LOGICAL-c503t-24339413203159378c80fb63e8becf64a55129d9ba4692c999aadf4950a637973
container_end_page 100865
container_issue
container_start_page 100865
container_title Materials today bio
container_volume 23
creator Özliseli, Ezgi
Şanlıdağ, Sami
Süren, Behice
Mahran, Alaa
Parikainen, Marjaana
Sahlgren, Cecilia
Rosenholm, Jessica M.
description Hydrogels play an important role in tissue engineering due to their native extracellular matrix-like characteristics, but they are insufficient in providing the necessary stimuli to support tissue formation. Efforts to integrate bioactive cues directly into hydrogels are hindered by incompatibility with hydrophobic drugs, issues of burst/uncontrolled release, and rapid degradation of the bioactive molecules. Skeletal muscle tissue repair requires internal stimuli and communication between cells for regeneration, and nanocomposite systems offer to improve the therapeutic effects in tissue regeneration. Here, the versatility of mesoporous silica nanoparticles (MSN) was leveraged to formulate a nanoparticle-hydrogel composite and to combine the benefits of controlled delivery of bioactive cues and cellular support. The tunable surface characteristics of MSNs were exploited to optimize homogeneity and intracellular drug delivery in a 3D matrix. Nanocomposite hydrogels formulated with acetylated or succinylated MSNs achieved high homogeneity in 3D distribution, with succinylated MSNs being rapidly internalized and acetylated MSNs exhibiting slower cellular uptake. MSN-hydrogel nanocomposites simultaneously allowed efficient local intracellular delivery of a hydrophobic model drug. To further study the efficiency of directing cell response, a Notch signaling inhibitor (DAPT) was incorporated into succinylated MSNs and incorporated into the hydrogel. MSN-hydrogel nanocomposites effectively downregulated the Notch signaling target genes, and accelerated and maintained the expression of myogenic markers. The current findings demonstrate a proof-of-concept in effective surface engineering strategies for MSN-based nanocomposites, suited for hydrophobic drug delivery in tissue regeneration with guided cues. [Display omitted]
doi_str_mv 10.1016/j.mtbio.2023.100865
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4d2f4b7c942a4010ab8f14c8592425b7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2590006423003253</els_id><doaj_id>oai_doaj_org_article_4d2f4b7c942a4010ab8f14c8592425b7</doaj_id><sourcerecordid>2898956328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-24339413203159378c80fb63e8becf64a55129d9ba4692c999aadf4950a637973</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEEtXSX8DFRy67-DOJDwihlo9KlbjA2Zo4k9SrxA62s1B-PclmheiF04zG876emacoXjN6YJSVb4-HMTcuHDjlYqnQulTPiiuuNN1TWsrn_-Qvi-uUjpRSXmlJqb4qft-6iDY73xOLwzAPEEnENAWfMBHnCRAPPtgwTiG5jETckhFydL9IFyLJLqUZF0WPHiNkFzz56fLDWTRBzM4OuB-xdZCxJW2ce9Li4E4YH18VLzoYEl5f4q74_unjt5sv-_uvn-9uPtzvraIi77kUQksmOBVMaVHVtqZdUwqsG7RdKUEpxnWrG5Cl5lZrDdB2UisKpah0JXbF3ebbBjiaKboR4qMJ4My5EGJvLoMa2fJONpXVkoOkjEJTd0zaWmkuuWpWr_eb1zQ3y1YWfY4wPDF9-uLdg-nDyTBaalkt8--KNxeHGH7MmLIZXVpPDx7DnAyvda1VKXi9tIqt1caQUsTu7z-MmhW9OZozerOiNxv6RfVuU-Fy05PDaJJ16O3CYCW9LO3-q_8D_aG6XA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898956328</pqid></control><display><type>article</type><title>Directing cellular responses in a nanocomposite 3D matrix for tissue regeneration with nanoparticle-mediated drug delivery</title><source>ScienceDirect</source><source>Open Access: PubMed Central</source><creator>Özliseli, Ezgi ; Şanlıdağ, Sami ; Süren, Behice ; Mahran, Alaa ; Parikainen, Marjaana ; Sahlgren, Cecilia ; Rosenholm, Jessica M.</creator><creatorcontrib>Özliseli, Ezgi ; Şanlıdağ, Sami ; Süren, Behice ; Mahran, Alaa ; Parikainen, Marjaana ; Sahlgren, Cecilia ; Rosenholm, Jessica M.</creatorcontrib><description>Hydrogels play an important role in tissue engineering due to their native extracellular matrix-like characteristics, but they are insufficient in providing the necessary stimuli to support tissue formation. Efforts to integrate bioactive cues directly into hydrogels are hindered by incompatibility with hydrophobic drugs, issues of burst/uncontrolled release, and rapid degradation of the bioactive molecules. Skeletal muscle tissue repair requires internal stimuli and communication between cells for regeneration, and nanocomposite systems offer to improve the therapeutic effects in tissue regeneration. Here, the versatility of mesoporous silica nanoparticles (MSN) was leveraged to formulate a nanoparticle-hydrogel composite and to combine the benefits of controlled delivery of bioactive cues and cellular support. The tunable surface characteristics of MSNs were exploited to optimize homogeneity and intracellular drug delivery in a 3D matrix. Nanocomposite hydrogels formulated with acetylated or succinylated MSNs achieved high homogeneity in 3D distribution, with succinylated MSNs being rapidly internalized and acetylated MSNs exhibiting slower cellular uptake. MSN-hydrogel nanocomposites simultaneously allowed efficient local intracellular delivery of a hydrophobic model drug. To further study the efficiency of directing cell response, a Notch signaling inhibitor (DAPT) was incorporated into succinylated MSNs and incorporated into the hydrogel. MSN-hydrogel nanocomposites effectively downregulated the Notch signaling target genes, and accelerated and maintained the expression of myogenic markers. The current findings demonstrate a proof-of-concept in effective surface engineering strategies for MSN-based nanocomposites, suited for hydrophobic drug delivery in tissue regeneration with guided cues. [Display omitted]</description><identifier>ISSN: 2590-0064</identifier><identifier>EISSN: 2590-0064</identifier><identifier>DOI: 10.1016/j.mtbio.2023.100865</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>3D cell culture ; Full Length ; Hydrophobic drug delivery ; Mesoporous silica nanoparticles ; Nanocomposite hydrogel ; Surface modification ; Tissue engineering</subject><ispartof>Materials today bio, 2023-12, Vol.23, p.100865-100865, Article 100865</ispartof><rights>2023 The Authors</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-24339413203159378c80fb63e8becf64a55129d9ba4692c999aadf4950a637973</citedby><cites>FETCH-LOGICAL-c503t-24339413203159378c80fb63e8becf64a55129d9ba4692c999aadf4950a637973</cites><orcidid>0009-0008-0683-6737 ; 0000-0001-8358-8716 ; 0000-0001-9663-2771 ; 0000-0003-3350-4937 ; 0000-0001-6085-1112 ; 0000-0001-6272-4897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694759/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2590006423003253$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,45759,53769,53771</link.rule.ids></links><search><creatorcontrib>Özliseli, Ezgi</creatorcontrib><creatorcontrib>Şanlıdağ, Sami</creatorcontrib><creatorcontrib>Süren, Behice</creatorcontrib><creatorcontrib>Mahran, Alaa</creatorcontrib><creatorcontrib>Parikainen, Marjaana</creatorcontrib><creatorcontrib>Sahlgren, Cecilia</creatorcontrib><creatorcontrib>Rosenholm, Jessica M.</creatorcontrib><title>Directing cellular responses in a nanocomposite 3D matrix for tissue regeneration with nanoparticle-mediated drug delivery</title><title>Materials today bio</title><description>Hydrogels play an important role in tissue engineering due to their native extracellular matrix-like characteristics, but they are insufficient in providing the necessary stimuli to support tissue formation. Efforts to integrate bioactive cues directly into hydrogels are hindered by incompatibility with hydrophobic drugs, issues of burst/uncontrolled release, and rapid degradation of the bioactive molecules. Skeletal muscle tissue repair requires internal stimuli and communication between cells for regeneration, and nanocomposite systems offer to improve the therapeutic effects in tissue regeneration. Here, the versatility of mesoporous silica nanoparticles (MSN) was leveraged to formulate a nanoparticle-hydrogel composite and to combine the benefits of controlled delivery of bioactive cues and cellular support. The tunable surface characteristics of MSNs were exploited to optimize homogeneity and intracellular drug delivery in a 3D matrix. Nanocomposite hydrogels formulated with acetylated or succinylated MSNs achieved high homogeneity in 3D distribution, with succinylated MSNs being rapidly internalized and acetylated MSNs exhibiting slower cellular uptake. MSN-hydrogel nanocomposites simultaneously allowed efficient local intracellular delivery of a hydrophobic model drug. To further study the efficiency of directing cell response, a Notch signaling inhibitor (DAPT) was incorporated into succinylated MSNs and incorporated into the hydrogel. MSN-hydrogel nanocomposites effectively downregulated the Notch signaling target genes, and accelerated and maintained the expression of myogenic markers. The current findings demonstrate a proof-of-concept in effective surface engineering strategies for MSN-based nanocomposites, suited for hydrophobic drug delivery in tissue regeneration with guided cues. [Display omitted]</description><subject>3D cell culture</subject><subject>Full Length</subject><subject>Hydrophobic drug delivery</subject><subject>Mesoporous silica nanoparticles</subject><subject>Nanocomposite hydrogel</subject><subject>Surface modification</subject><subject>Tissue engineering</subject><issn>2590-0064</issn><issn>2590-0064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEEtXSX8DFRy67-DOJDwihlo9KlbjA2Zo4k9SrxA62s1B-PclmheiF04zG876emacoXjN6YJSVb4-HMTcuHDjlYqnQulTPiiuuNN1TWsrn_-Qvi-uUjpRSXmlJqb4qft-6iDY73xOLwzAPEEnENAWfMBHnCRAPPtgwTiG5jETckhFydL9IFyLJLqUZF0WPHiNkFzz56fLDWTRBzM4OuB-xdZCxJW2ce9Li4E4YH18VLzoYEl5f4q74_unjt5sv-_uvn-9uPtzvraIi77kUQksmOBVMaVHVtqZdUwqsG7RdKUEpxnWrG5Cl5lZrDdB2UisKpah0JXbF3ebbBjiaKboR4qMJ4My5EGJvLoMa2fJONpXVkoOkjEJTd0zaWmkuuWpWr_eb1zQ3y1YWfY4wPDF9-uLdg-nDyTBaalkt8--KNxeHGH7MmLIZXVpPDx7DnAyvda1VKXi9tIqt1caQUsTu7z-MmhW9OZozerOiNxv6RfVuU-Fy05PDaJJ16O3CYCW9LO3-q_8D_aG6XA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Özliseli, Ezgi</creator><creator>Şanlıdağ, Sami</creator><creator>Süren, Behice</creator><creator>Mahran, Alaa</creator><creator>Parikainen, Marjaana</creator><creator>Sahlgren, Cecilia</creator><creator>Rosenholm, Jessica M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0008-0683-6737</orcidid><orcidid>https://orcid.org/0000-0001-8358-8716</orcidid><orcidid>https://orcid.org/0000-0001-9663-2771</orcidid><orcidid>https://orcid.org/0000-0003-3350-4937</orcidid><orcidid>https://orcid.org/0000-0001-6085-1112</orcidid><orcidid>https://orcid.org/0000-0001-6272-4897</orcidid></search><sort><creationdate>20231201</creationdate><title>Directing cellular responses in a nanocomposite 3D matrix for tissue regeneration with nanoparticle-mediated drug delivery</title><author>Özliseli, Ezgi ; Şanlıdağ, Sami ; Süren, Behice ; Mahran, Alaa ; Parikainen, Marjaana ; Sahlgren, Cecilia ; Rosenholm, Jessica M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-24339413203159378c80fb63e8becf64a55129d9ba4692c999aadf4950a637973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D cell culture</topic><topic>Full Length</topic><topic>Hydrophobic drug delivery</topic><topic>Mesoporous silica nanoparticles</topic><topic>Nanocomposite hydrogel</topic><topic>Surface modification</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Özliseli, Ezgi</creatorcontrib><creatorcontrib>Şanlıdağ, Sami</creatorcontrib><creatorcontrib>Süren, Behice</creatorcontrib><creatorcontrib>Mahran, Alaa</creatorcontrib><creatorcontrib>Parikainen, Marjaana</creatorcontrib><creatorcontrib>Sahlgren, Cecilia</creatorcontrib><creatorcontrib>Rosenholm, Jessica M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials today bio</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Özliseli, Ezgi</au><au>Şanlıdağ, Sami</au><au>Süren, Behice</au><au>Mahran, Alaa</au><au>Parikainen, Marjaana</au><au>Sahlgren, Cecilia</au><au>Rosenholm, Jessica M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directing cellular responses in a nanocomposite 3D matrix for tissue regeneration with nanoparticle-mediated drug delivery</atitle><jtitle>Materials today bio</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>23</volume><spage>100865</spage><epage>100865</epage><pages>100865-100865</pages><artnum>100865</artnum><issn>2590-0064</issn><eissn>2590-0064</eissn><abstract>Hydrogels play an important role in tissue engineering due to their native extracellular matrix-like characteristics, but they are insufficient in providing the necessary stimuli to support tissue formation. Efforts to integrate bioactive cues directly into hydrogels are hindered by incompatibility with hydrophobic drugs, issues of burst/uncontrolled release, and rapid degradation of the bioactive molecules. Skeletal muscle tissue repair requires internal stimuli and communication between cells for regeneration, and nanocomposite systems offer to improve the therapeutic effects in tissue regeneration. Here, the versatility of mesoporous silica nanoparticles (MSN) was leveraged to formulate a nanoparticle-hydrogel composite and to combine the benefits of controlled delivery of bioactive cues and cellular support. The tunable surface characteristics of MSNs were exploited to optimize homogeneity and intracellular drug delivery in a 3D matrix. Nanocomposite hydrogels formulated with acetylated or succinylated MSNs achieved high homogeneity in 3D distribution, with succinylated MSNs being rapidly internalized and acetylated MSNs exhibiting slower cellular uptake. MSN-hydrogel nanocomposites simultaneously allowed efficient local intracellular delivery of a hydrophobic model drug. To further study the efficiency of directing cell response, a Notch signaling inhibitor (DAPT) was incorporated into succinylated MSNs and incorporated into the hydrogel. MSN-hydrogel nanocomposites effectively downregulated the Notch signaling target genes, and accelerated and maintained the expression of myogenic markers. The current findings demonstrate a proof-of-concept in effective surface engineering strategies for MSN-based nanocomposites, suited for hydrophobic drug delivery in tissue regeneration with guided cues. [Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.mtbio.2023.100865</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0008-0683-6737</orcidid><orcidid>https://orcid.org/0000-0001-8358-8716</orcidid><orcidid>https://orcid.org/0000-0001-9663-2771</orcidid><orcidid>https://orcid.org/0000-0003-3350-4937</orcidid><orcidid>https://orcid.org/0000-0001-6085-1112</orcidid><orcidid>https://orcid.org/0000-0001-6272-4897</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2590-0064
ispartof Materials today bio, 2023-12, Vol.23, p.100865-100865, Article 100865
issn 2590-0064
2590-0064
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4d2f4b7c942a4010ab8f14c8592425b7
source ScienceDirect; Open Access: PubMed Central
subjects 3D cell culture
Full Length
Hydrophobic drug delivery
Mesoporous silica nanoparticles
Nanocomposite hydrogel
Surface modification
Tissue engineering
title Directing cellular responses in a nanocomposite 3D matrix for tissue regeneration with nanoparticle-mediated drug delivery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directing%20cellular%20responses%20in%20a%20nanocomposite%203D%20matrix%20for%20tissue%20regeneration%20with%20nanoparticle-mediated%20drug%20delivery&rft.jtitle=Materials%20today%20bio&rft.au=%C3%96zliseli,%20Ezgi&rft.date=2023-12-01&rft.volume=23&rft.spage=100865&rft.epage=100865&rft.pages=100865-100865&rft.artnum=100865&rft.issn=2590-0064&rft.eissn=2590-0064&rft_id=info:doi/10.1016/j.mtbio.2023.100865&rft_dat=%3Cproquest_doaj_%3E2898956328%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c503t-24339413203159378c80fb63e8becf64a55129d9ba4692c999aadf4950a637973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2898956328&rft_id=info:pmid/&rfr_iscdi=true