Loading…
Molecular Analysis of Murine KitK641E Melanoma Progression
Acral and mucosal melanomas are often driven by sequence variants in the KIT receptor tyrosine kinase, with nearly 40% harboring alterations in the KIT locus. Despite advances in the knowledge of KIT-mutated melanomas, little is known about the molecular reprogramming that occurs during KIT-mediated...
Saved in:
Published in: | JID innovations 2024-05, Vol.4 (3), p.100266-100266, Article 100266 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Acral and mucosal melanomas are often driven by sequence variants in the KIT receptor tyrosine kinase, with nearly 40% harboring alterations in the KIT locus. Despite advances in the knowledge of KIT-mutated melanomas, little is known about the molecular reprogramming that occurs during KIT-mediated melanoma progression owing to the rarity of acral and mucosal melanomas and the lack of comprehensive biological tools and models. To this end, we used a murine model that allows us to ascertain the molecular underpinnings of the stages of cancer progression—transformation, tumorigenesis, immune engagement, and tumor escalation. We found dramatic increases in biosynthetic demands associated with the transformation stage, including DNA and RNA metabolism, leading to replication stress. Tumorigenesis was closely linked to neuronal and axonal development, likely necessary for invasion into the host. Immune engagement highlighted early immune excitation and rejection pathways, possibly triggered by abrupt neoantigen exposure. Finally, tumor escalation pathways proved consistent with immune evasion, with immune-related pathways becoming significantly downregulated. To our knowledge, it is previously unreported that these critical milestones needed for KIT-driven melanoma tumor formation have been studied at the molecular level using isogenically matched and phenotypically defined cells. |
---|---|
ISSN: | 2667-0267 2667-0267 |
DOI: | 10.1016/j.xjidi.2024.100266 |