Loading…
Wet tropospheric correction for satellite altimetry using SIRGAS-CON products
The wet tropospheric correction (WTC) is a required correction to satellite altimetry measurements, mainly due to the atmospheric water vapor delay. On-board microwave radiometers (MWR) provide information for WTC estimation but fail in coastal zones and inland waters. In view to recover the WTC in...
Saved in:
Published in: | Journal of Geodetic Science (Online) 2022-12, Vol.12 (1), p.211-229 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c328t-6517e0d76aeb112326ca7aad40457964d3f44e979cdfa1de88f8c824e8c791713 |
---|---|
cites | cdi_FETCH-LOGICAL-c328t-6517e0d76aeb112326ca7aad40457964d3f44e979cdfa1de88f8c824e8c791713 |
container_end_page | 229 |
container_issue | 1 |
container_start_page | 211 |
container_title | Journal of Geodetic Science (Online) |
container_volume | 12 |
creator | Prado, Anderson Vieira, Telmo Pires, Nelson Fernandes, Maria Joana |
description | The wet tropospheric correction (WTC) is a required correction to satellite altimetry measurements, mainly due to the atmospheric water vapor delay. On-board microwave radiometers (MWR) provide information for WTC estimation but fail in coastal zones and inland waters. In view to recover the WTC in these areas, the Global Navigation Satellite System (GNSS)-derived Path Delay Plus (GPD+) method, developed by the University of Porto, uses Zenith Tropospheric Delays from GNSS global and regional networks’ stations combined with other sources of information, providing a WTC solution for all along-track altimeter points. To densify the existing dataset used by GPD+, it is necessary to add new GNSS stations, mainly in the southern hemisphere, in regions such as South America, Africa and Oceania. This work aims to exploit the SIRGAS-CON data and its potential for densification of the GPD+ input dataset in Latin America and to improve GPD+ performance. The results for the three analyzed satellites (Sentinel-3A, Sentinel-3B and CryoSat-2) show that, when compared with the WTC from GNSS and radiosondes, the densified GPD+ WTC leads to a reduction in the RMS of the WTC differences with respect to the non-densified GPD+ solution, up to 2 mm for the whole region and up to 5 mm in some locations. |
doi_str_mv | 10.1515/jogs-2022-0146 |
format | article |
fullrecord | <record><control><sourceid>walterdegruyter_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4d35a3630d04482199b229fac56f3ee7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4d35a3630d04482199b229fac56f3ee7</doaj_id><sourcerecordid>10_1515_jogs_2022_0146121211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-6517e0d76aeb112326ca7aad40457964d3f44e979cdfa1de88f8c824e8c791713</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhhdRsGivnvMHtuZrNwl4KUVroVqwiseQJrPrlm1TkizSf--uFfEic5hhmPeBebLshuAJKUhxu_V1zCmmNMeEl2fZiGJJcqU4O_8zX2bjGLcYY1JghQsxyp7eIaEU_MHHwweExiLrQwCbGr9HlQ8omgRt2yRApk3NDlI4oi42-xqtFy_z6TqfrZ7RIXjX2RSvs4vKtBHGP_0qe3u4f5095svVfDGbLnPLqEx5WRAB2InSwIYQymhpjTDGccwLoUruWMU5KKGsqwxxIGUlraQcpBWKCMKussWJ67zZ6kNodiYctTeN_l74UGsTUmNb0D2sMKxk2GHOJSVKbShVlbFFWTEA0bMmJ5YNPsYA1S-PYD241YNbPbjVg9s-cHcKfPZGIDioQ3fsh_6uC_v-7X-ChPZF2BebioBf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Wet tropospheric correction for satellite altimetry using SIRGAS-CON products</title><source>Walter De Gruyter: Open Access Journals</source><creator>Prado, Anderson ; Vieira, Telmo ; Pires, Nelson ; Fernandes, Maria Joana</creator><creatorcontrib>Prado, Anderson ; Vieira, Telmo ; Pires, Nelson ; Fernandes, Maria Joana</creatorcontrib><description>The wet tropospheric correction (WTC) is a required correction to satellite altimetry measurements, mainly due to the atmospheric water vapor delay. On-board microwave radiometers (MWR) provide information for WTC estimation but fail in coastal zones and inland waters. In view to recover the WTC in these areas, the Global Navigation Satellite System (GNSS)-derived Path Delay Plus (GPD+) method, developed by the University of Porto, uses Zenith Tropospheric Delays from GNSS global and regional networks’ stations combined with other sources of information, providing a WTC solution for all along-track altimeter points. To densify the existing dataset used by GPD+, it is necessary to add new GNSS stations, mainly in the southern hemisphere, in regions such as South America, Africa and Oceania. This work aims to exploit the SIRGAS-CON data and its potential for densification of the GPD+ input dataset in Latin America and to improve GPD+ performance. The results for the three analyzed satellites (Sentinel-3A, Sentinel-3B and CryoSat-2) show that, when compared with the WTC from GNSS and radiosondes, the densified GPD+ WTC leads to a reduction in the RMS of the WTC differences with respect to the non-densified GPD+ solution, up to 2 mm for the whole region and up to 5 mm in some locations.</description><identifier>ISSN: 2081-9943</identifier><identifier>EISSN: 2081-9943</identifier><identifier>DOI: 10.1515/jogs-2022-0146</identifier><language>eng</language><publisher>De Gruyter</publisher><subject>coastal zones ; CryoSat-2 ; GNSS ; Latin America ; microwave radiometer ; radiosonde ; Sentinel-3 ; troposphere ; water vapor</subject><ispartof>Journal of Geodetic Science (Online), 2022-12, Vol.12 (1), p.211-229</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-6517e0d76aeb112326ca7aad40457964d3f44e979cdfa1de88f8c824e8c791713</citedby><cites>FETCH-LOGICAL-c328t-6517e0d76aeb112326ca7aad40457964d3f44e979cdfa1de88f8c824e8c791713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/jogs-2022-0146/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/jogs-2022-0146/html$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,67030,68814</link.rule.ids></links><search><creatorcontrib>Prado, Anderson</creatorcontrib><creatorcontrib>Vieira, Telmo</creatorcontrib><creatorcontrib>Pires, Nelson</creatorcontrib><creatorcontrib>Fernandes, Maria Joana</creatorcontrib><title>Wet tropospheric correction for satellite altimetry using SIRGAS-CON products</title><title>Journal of Geodetic Science (Online)</title><description>The wet tropospheric correction (WTC) is a required correction to satellite altimetry measurements, mainly due to the atmospheric water vapor delay. On-board microwave radiometers (MWR) provide information for WTC estimation but fail in coastal zones and inland waters. In view to recover the WTC in these areas, the Global Navigation Satellite System (GNSS)-derived Path Delay Plus (GPD+) method, developed by the University of Porto, uses Zenith Tropospheric Delays from GNSS global and regional networks’ stations combined with other sources of information, providing a WTC solution for all along-track altimeter points. To densify the existing dataset used by GPD+, it is necessary to add new GNSS stations, mainly in the southern hemisphere, in regions such as South America, Africa and Oceania. This work aims to exploit the SIRGAS-CON data and its potential for densification of the GPD+ input dataset in Latin America and to improve GPD+ performance. The results for the three analyzed satellites (Sentinel-3A, Sentinel-3B and CryoSat-2) show that, when compared with the WTC from GNSS and radiosondes, the densified GPD+ WTC leads to a reduction in the RMS of the WTC differences with respect to the non-densified GPD+ solution, up to 2 mm for the whole region and up to 5 mm in some locations.</description><subject>coastal zones</subject><subject>CryoSat-2</subject><subject>GNSS</subject><subject>Latin America</subject><subject>microwave radiometer</subject><subject>radiosonde</subject><subject>Sentinel-3</subject><subject>troposphere</subject><subject>water vapor</subject><issn>2081-9943</issn><issn>2081-9943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kE1LAzEQhhdRsGivnvMHtuZrNwl4KUVroVqwiseQJrPrlm1TkizSf--uFfEic5hhmPeBebLshuAJKUhxu_V1zCmmNMeEl2fZiGJJcqU4O_8zX2bjGLcYY1JghQsxyp7eIaEU_MHHwweExiLrQwCbGr9HlQ8omgRt2yRApk3NDlI4oi42-xqtFy_z6TqfrZ7RIXjX2RSvs4vKtBHGP_0qe3u4f5095svVfDGbLnPLqEx5WRAB2InSwIYQymhpjTDGccwLoUruWMU5KKGsqwxxIGUlraQcpBWKCMKussWJ67zZ6kNodiYctTeN_l74UGsTUmNb0D2sMKxk2GHOJSVKbShVlbFFWTEA0bMmJ5YNPsYA1S-PYD241YNbPbjVg9s-cHcKfPZGIDioQ3fsh_6uC_v-7X-ChPZF2BebioBf</recordid><startdate>20221223</startdate><enddate>20221223</enddate><creator>Prado, Anderson</creator><creator>Vieira, Telmo</creator><creator>Pires, Nelson</creator><creator>Fernandes, Maria Joana</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20221223</creationdate><title>Wet tropospheric correction for satellite altimetry using SIRGAS-CON products</title><author>Prado, Anderson ; Vieira, Telmo ; Pires, Nelson ; Fernandes, Maria Joana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-6517e0d76aeb112326ca7aad40457964d3f44e979cdfa1de88f8c824e8c791713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>coastal zones</topic><topic>CryoSat-2</topic><topic>GNSS</topic><topic>Latin America</topic><topic>microwave radiometer</topic><topic>radiosonde</topic><topic>Sentinel-3</topic><topic>troposphere</topic><topic>water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prado, Anderson</creatorcontrib><creatorcontrib>Vieira, Telmo</creatorcontrib><creatorcontrib>Pires, Nelson</creatorcontrib><creatorcontrib>Fernandes, Maria Joana</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of Geodetic Science (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prado, Anderson</au><au>Vieira, Telmo</au><au>Pires, Nelson</au><au>Fernandes, Maria Joana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wet tropospheric correction for satellite altimetry using SIRGAS-CON products</atitle><jtitle>Journal of Geodetic Science (Online)</jtitle><date>2022-12-23</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>211</spage><epage>229</epage><pages>211-229</pages><issn>2081-9943</issn><eissn>2081-9943</eissn><abstract>The wet tropospheric correction (WTC) is a required correction to satellite altimetry measurements, mainly due to the atmospheric water vapor delay. On-board microwave radiometers (MWR) provide information for WTC estimation but fail in coastal zones and inland waters. In view to recover the WTC in these areas, the Global Navigation Satellite System (GNSS)-derived Path Delay Plus (GPD+) method, developed by the University of Porto, uses Zenith Tropospheric Delays from GNSS global and regional networks’ stations combined with other sources of information, providing a WTC solution for all along-track altimeter points. To densify the existing dataset used by GPD+, it is necessary to add new GNSS stations, mainly in the southern hemisphere, in regions such as South America, Africa and Oceania. This work aims to exploit the SIRGAS-CON data and its potential for densification of the GPD+ input dataset in Latin America and to improve GPD+ performance. The results for the three analyzed satellites (Sentinel-3A, Sentinel-3B and CryoSat-2) show that, when compared with the WTC from GNSS and radiosondes, the densified GPD+ WTC leads to a reduction in the RMS of the WTC differences with respect to the non-densified GPD+ solution, up to 2 mm for the whole region and up to 5 mm in some locations.</abstract><pub>De Gruyter</pub><doi>10.1515/jogs-2022-0146</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2081-9943 |
ispartof | Journal of Geodetic Science (Online), 2022-12, Vol.12 (1), p.211-229 |
issn | 2081-9943 2081-9943 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4d35a3630d04482199b229fac56f3ee7 |
source | Walter De Gruyter: Open Access Journals |
subjects | coastal zones CryoSat-2 GNSS Latin America microwave radiometer radiosonde Sentinel-3 troposphere water vapor |
title | Wet tropospheric correction for satellite altimetry using SIRGAS-CON products |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wet%20tropospheric%20correction%20for%20satellite%20altimetry%20using%20SIRGAS-CON%20products&rft.jtitle=Journal%20of%20Geodetic%20Science%20(Online)&rft.au=Prado,%20Anderson&rft.date=2022-12-23&rft.volume=12&rft.issue=1&rft.spage=211&rft.epage=229&rft.pages=211-229&rft.issn=2081-9943&rft.eissn=2081-9943&rft_id=info:doi/10.1515/jogs-2022-0146&rft_dat=%3Cwalterdegruyter_doaj_%3E10_1515_jogs_2022_0146121211%3C/walterdegruyter_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-6517e0d76aeb112326ca7aad40457964d3f44e979cdfa1de88f8c824e8c791713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |