Loading…

Wet tropospheric correction for satellite altimetry using SIRGAS-CON products

The wet tropospheric correction (WTC) is a required correction to satellite altimetry measurements, mainly due to the atmospheric water vapor delay. On-board microwave radiometers (MWR) provide information for WTC estimation but fail in coastal zones and inland waters. In view to recover the WTC in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geodetic Science (Online) 2022-12, Vol.12 (1), p.211-229
Main Authors: Prado, Anderson, Vieira, Telmo, Pires, Nelson, Fernandes, Maria Joana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-6517e0d76aeb112326ca7aad40457964d3f44e979cdfa1de88f8c824e8c791713
cites cdi_FETCH-LOGICAL-c328t-6517e0d76aeb112326ca7aad40457964d3f44e979cdfa1de88f8c824e8c791713
container_end_page 229
container_issue 1
container_start_page 211
container_title Journal of Geodetic Science (Online)
container_volume 12
creator Prado, Anderson
Vieira, Telmo
Pires, Nelson
Fernandes, Maria Joana
description The wet tropospheric correction (WTC) is a required correction to satellite altimetry measurements, mainly due to the atmospheric water vapor delay. On-board microwave radiometers (MWR) provide information for WTC estimation but fail in coastal zones and inland waters. In view to recover the WTC in these areas, the Global Navigation Satellite System (GNSS)-derived Path Delay Plus (GPD+) method, developed by the University of Porto, uses Zenith Tropospheric Delays from GNSS global and regional networks’ stations combined with other sources of information, providing a WTC solution for all along-track altimeter points. To densify the existing dataset used by GPD+, it is necessary to add new GNSS stations, mainly in the southern hemisphere, in regions such as South America, Africa and Oceania. This work aims to exploit the SIRGAS-CON data and its potential for densification of the GPD+ input dataset in Latin America and to improve GPD+ performance. The results for the three analyzed satellites (Sentinel-3A, Sentinel-3B and CryoSat-2) show that, when compared with the WTC from GNSS and radiosondes, the densified GPD+ WTC leads to a reduction in the RMS of the WTC differences with respect to the non-densified GPD+ solution, up to 2 mm for the whole region and up to 5 mm in some locations.
doi_str_mv 10.1515/jogs-2022-0146
format article
fullrecord <record><control><sourceid>walterdegruyter_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4d35a3630d04482199b229fac56f3ee7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4d35a3630d04482199b229fac56f3ee7</doaj_id><sourcerecordid>10_1515_jogs_2022_0146121211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-6517e0d76aeb112326ca7aad40457964d3f44e979cdfa1de88f8c824e8c791713</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhhdRsGivnvMHtuZrNwl4KUVroVqwiseQJrPrlm1TkizSf--uFfEic5hhmPeBebLshuAJKUhxu_V1zCmmNMeEl2fZiGJJcqU4O_8zX2bjGLcYY1JghQsxyp7eIaEU_MHHwweExiLrQwCbGr9HlQ8omgRt2yRApk3NDlI4oi42-xqtFy_z6TqfrZ7RIXjX2RSvs4vKtBHGP_0qe3u4f5095svVfDGbLnPLqEx5WRAB2InSwIYQymhpjTDGccwLoUruWMU5KKGsqwxxIGUlraQcpBWKCMKussWJ67zZ6kNodiYctTeN_l74UGsTUmNb0D2sMKxk2GHOJSVKbShVlbFFWTEA0bMmJ5YNPsYA1S-PYD241YNbPbjVg9s-cHcKfPZGIDioQ3fsh_6uC_v-7X-ChPZF2BebioBf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Wet tropospheric correction for satellite altimetry using SIRGAS-CON products</title><source>Walter De Gruyter: Open Access Journals</source><creator>Prado, Anderson ; Vieira, Telmo ; Pires, Nelson ; Fernandes, Maria Joana</creator><creatorcontrib>Prado, Anderson ; Vieira, Telmo ; Pires, Nelson ; Fernandes, Maria Joana</creatorcontrib><description>The wet tropospheric correction (WTC) is a required correction to satellite altimetry measurements, mainly due to the atmospheric water vapor delay. On-board microwave radiometers (MWR) provide information for WTC estimation but fail in coastal zones and inland waters. In view to recover the WTC in these areas, the Global Navigation Satellite System (GNSS)-derived Path Delay Plus (GPD+) method, developed by the University of Porto, uses Zenith Tropospheric Delays from GNSS global and regional networks’ stations combined with other sources of information, providing a WTC solution for all along-track altimeter points. To densify the existing dataset used by GPD+, it is necessary to add new GNSS stations, mainly in the southern hemisphere, in regions such as South America, Africa and Oceania. This work aims to exploit the SIRGAS-CON data and its potential for densification of the GPD+ input dataset in Latin America and to improve GPD+ performance. The results for the three analyzed satellites (Sentinel-3A, Sentinel-3B and CryoSat-2) show that, when compared with the WTC from GNSS and radiosondes, the densified GPD+ WTC leads to a reduction in the RMS of the WTC differences with respect to the non-densified GPD+ solution, up to 2 mm for the whole region and up to 5 mm in some locations.</description><identifier>ISSN: 2081-9943</identifier><identifier>EISSN: 2081-9943</identifier><identifier>DOI: 10.1515/jogs-2022-0146</identifier><language>eng</language><publisher>De Gruyter</publisher><subject>coastal zones ; CryoSat-2 ; GNSS ; Latin America ; microwave radiometer ; radiosonde ; Sentinel-3 ; troposphere ; water vapor</subject><ispartof>Journal of Geodetic Science (Online), 2022-12, Vol.12 (1), p.211-229</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-6517e0d76aeb112326ca7aad40457964d3f44e979cdfa1de88f8c824e8c791713</citedby><cites>FETCH-LOGICAL-c328t-6517e0d76aeb112326ca7aad40457964d3f44e979cdfa1de88f8c824e8c791713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/jogs-2022-0146/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/jogs-2022-0146/html$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,67030,68814</link.rule.ids></links><search><creatorcontrib>Prado, Anderson</creatorcontrib><creatorcontrib>Vieira, Telmo</creatorcontrib><creatorcontrib>Pires, Nelson</creatorcontrib><creatorcontrib>Fernandes, Maria Joana</creatorcontrib><title>Wet tropospheric correction for satellite altimetry using SIRGAS-CON products</title><title>Journal of Geodetic Science (Online)</title><description>The wet tropospheric correction (WTC) is a required correction to satellite altimetry measurements, mainly due to the atmospheric water vapor delay. On-board microwave radiometers (MWR) provide information for WTC estimation but fail in coastal zones and inland waters. In view to recover the WTC in these areas, the Global Navigation Satellite System (GNSS)-derived Path Delay Plus (GPD+) method, developed by the University of Porto, uses Zenith Tropospheric Delays from GNSS global and regional networks’ stations combined with other sources of information, providing a WTC solution for all along-track altimeter points. To densify the existing dataset used by GPD+, it is necessary to add new GNSS stations, mainly in the southern hemisphere, in regions such as South America, Africa and Oceania. This work aims to exploit the SIRGAS-CON data and its potential for densification of the GPD+ input dataset in Latin America and to improve GPD+ performance. The results for the three analyzed satellites (Sentinel-3A, Sentinel-3B and CryoSat-2) show that, when compared with the WTC from GNSS and radiosondes, the densified GPD+ WTC leads to a reduction in the RMS of the WTC differences with respect to the non-densified GPD+ solution, up to 2 mm for the whole region and up to 5 mm in some locations.</description><subject>coastal zones</subject><subject>CryoSat-2</subject><subject>GNSS</subject><subject>Latin America</subject><subject>microwave radiometer</subject><subject>radiosonde</subject><subject>Sentinel-3</subject><subject>troposphere</subject><subject>water vapor</subject><issn>2081-9943</issn><issn>2081-9943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kE1LAzEQhhdRsGivnvMHtuZrNwl4KUVroVqwiseQJrPrlm1TkizSf--uFfEic5hhmPeBebLshuAJKUhxu_V1zCmmNMeEl2fZiGJJcqU4O_8zX2bjGLcYY1JghQsxyp7eIaEU_MHHwweExiLrQwCbGr9HlQ8omgRt2yRApk3NDlI4oi42-xqtFy_z6TqfrZ7RIXjX2RSvs4vKtBHGP_0qe3u4f5095svVfDGbLnPLqEx5WRAB2InSwIYQymhpjTDGccwLoUruWMU5KKGsqwxxIGUlraQcpBWKCMKussWJ67zZ6kNodiYctTeN_l74UGsTUmNb0D2sMKxk2GHOJSVKbShVlbFFWTEA0bMmJ5YNPsYA1S-PYD241YNbPbjVg9s-cHcKfPZGIDioQ3fsh_6uC_v-7X-ChPZF2BebioBf</recordid><startdate>20221223</startdate><enddate>20221223</enddate><creator>Prado, Anderson</creator><creator>Vieira, Telmo</creator><creator>Pires, Nelson</creator><creator>Fernandes, Maria Joana</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20221223</creationdate><title>Wet tropospheric correction for satellite altimetry using SIRGAS-CON products</title><author>Prado, Anderson ; Vieira, Telmo ; Pires, Nelson ; Fernandes, Maria Joana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-6517e0d76aeb112326ca7aad40457964d3f44e979cdfa1de88f8c824e8c791713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>coastal zones</topic><topic>CryoSat-2</topic><topic>GNSS</topic><topic>Latin America</topic><topic>microwave radiometer</topic><topic>radiosonde</topic><topic>Sentinel-3</topic><topic>troposphere</topic><topic>water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prado, Anderson</creatorcontrib><creatorcontrib>Vieira, Telmo</creatorcontrib><creatorcontrib>Pires, Nelson</creatorcontrib><creatorcontrib>Fernandes, Maria Joana</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of Geodetic Science (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prado, Anderson</au><au>Vieira, Telmo</au><au>Pires, Nelson</au><au>Fernandes, Maria Joana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wet tropospheric correction for satellite altimetry using SIRGAS-CON products</atitle><jtitle>Journal of Geodetic Science (Online)</jtitle><date>2022-12-23</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>211</spage><epage>229</epage><pages>211-229</pages><issn>2081-9943</issn><eissn>2081-9943</eissn><abstract>The wet tropospheric correction (WTC) is a required correction to satellite altimetry measurements, mainly due to the atmospheric water vapor delay. On-board microwave radiometers (MWR) provide information for WTC estimation but fail in coastal zones and inland waters. In view to recover the WTC in these areas, the Global Navigation Satellite System (GNSS)-derived Path Delay Plus (GPD+) method, developed by the University of Porto, uses Zenith Tropospheric Delays from GNSS global and regional networks’ stations combined with other sources of information, providing a WTC solution for all along-track altimeter points. To densify the existing dataset used by GPD+, it is necessary to add new GNSS stations, mainly in the southern hemisphere, in regions such as South America, Africa and Oceania. This work aims to exploit the SIRGAS-CON data and its potential for densification of the GPD+ input dataset in Latin America and to improve GPD+ performance. The results for the three analyzed satellites (Sentinel-3A, Sentinel-3B and CryoSat-2) show that, when compared with the WTC from GNSS and radiosondes, the densified GPD+ WTC leads to a reduction in the RMS of the WTC differences with respect to the non-densified GPD+ solution, up to 2 mm for the whole region and up to 5 mm in some locations.</abstract><pub>De Gruyter</pub><doi>10.1515/jogs-2022-0146</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2081-9943
ispartof Journal of Geodetic Science (Online), 2022-12, Vol.12 (1), p.211-229
issn 2081-9943
2081-9943
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4d35a3630d04482199b229fac56f3ee7
source Walter De Gruyter: Open Access Journals
subjects coastal zones
CryoSat-2
GNSS
Latin America
microwave radiometer
radiosonde
Sentinel-3
troposphere
water vapor
title Wet tropospheric correction for satellite altimetry using SIRGAS-CON products
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wet%20tropospheric%20correction%20for%20satellite%20altimetry%20using%20SIRGAS-CON%20products&rft.jtitle=Journal%20of%20Geodetic%20Science%20(Online)&rft.au=Prado,%20Anderson&rft.date=2022-12-23&rft.volume=12&rft.issue=1&rft.spage=211&rft.epage=229&rft.pages=211-229&rft.issn=2081-9943&rft.eissn=2081-9943&rft_id=info:doi/10.1515/jogs-2022-0146&rft_dat=%3Cwalterdegruyter_doaj_%3E10_1515_jogs_2022_0146121211%3C/walterdegruyter_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-6517e0d76aeb112326ca7aad40457964d3f44e979cdfa1de88f8c824e8c791713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true