Loading…
Comparison of Machine Learning Models and the Fatty Liver Index in Predicting Lean Fatty Liver
The reported prevalence of non-alcoholic fatty liver disease in studies of lean individuals ranges from 7.6% to 19.3%. The aim of the study was to develop machine-learning models for the prediction of fatty liver disease in lean individuals. The present retrospective study included 12,191 lean subje...
Saved in:
Published in: | Diagnostics (Basel) 2023-04, Vol.13 (8), p.1407 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c567t-5e4b2aac8f1d72427f779399f7c85dd3f3bed987a0fad638e6fb9f43dfbadfec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c567t-5e4b2aac8f1d72427f779399f7c85dd3f3bed987a0fad638e6fb9f43dfbadfec3 |
container_end_page | |
container_issue | 8 |
container_start_page | 1407 |
container_title | Diagnostics (Basel) |
container_volume | 13 |
creator | Su, Pei-Yuan Chen, Yang-Yuan Lin, Chun-Yu Su, Wei-Wen Huang, Siou-Ping Yen, Hsu-Heng |
description | The reported prevalence of non-alcoholic fatty liver disease in studies of lean individuals ranges from 7.6% to 19.3%. The aim of the study was to develop machine-learning models for the prediction of fatty liver disease in lean individuals. The present retrospective study included 12,191 lean subjects with a body mass index < 23 kg/m
who had undergone a health checkup from January 2009 to January 2019. Participants were divided into a training (70%, 8533 subjects) and a testing group (30%, 3568 subjects). A total of 27 clinical features were analyzed, except for medical history and history of alcohol or tobacco consumption. Among the 12,191 lean individuals included in the present study, 741 (6.1%) had fatty liver. The machine learning model comprising a two-class neural network using 10 features had the highest area under the receiver operating characteristic curve (AUROC) value (0.885) among all other algorithms. When applied to the testing group, we found the two-class neural network exhibited a slightly higher AUROC value for predicting fatty liver (0.868, 0.841-0.894) compared to the fatty liver index (FLI; 0.852, 0.824-0.81). In conclusion, the two-class neural network had greater predictive value for fatty liver than the FLI in lean individuals. |
doi_str_mv | 10.3390/diagnostics13081407 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4d3e0e0a971f4313a4673229e4fe0e2c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747443398</galeid><doaj_id>oai_doaj_org_article_4d3e0e0a971f4313a4673229e4fe0e2c</doaj_id><sourcerecordid>A747443398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-5e4b2aac8f1d72427f779399f7c85dd3f3bed987a0fad638e6fb9f43dfbadfec3</originalsourceid><addsrcrecordid>eNptksFuEzEQhlcIRKvSJ0BClrhwSbHX3vX6hKqIQqRUcIAr1sQebxzt2sHeVPTtcUgpCap9sDX-_28046mq14xeca7oe-uhDzFP3mTGaccElc-q85rKZiYE654f3c-qy5w3tCzFeFc3L6szLlmnGtqdVz_mcdxC8jkGEh25BbP2AckSIQUfenIbLQ6ZQLBkWiO5gWm6J0t_h4ksgsVfxAfyNaH1ZtrLiy8ci15VLxwMGS8fzovq-83Hb_PPs-WXT4v59XJmmlZOswbFqgYwnWNW1qKWTkrFlXLSdI213PEVWtVJoA5syzts3Uo5wa1bgXVo-EW1OHBthI3eJj9CutcRvP4TiKnXkEqzBtTCcqRIQUlWCIyDaCWva4XClXi9Z304sLa71YjWYJgSDCfQ05fg17qPd5pRxqWQohDePRBS_LnDPOnRZ4PDAAHjLuu6_FdTi0aoIn37n3QTdymUXhUVbRvWtrT5p-qhVOCDiyWx2UP19T6jKDPRFdXVE6qyLY7exIDOl_iJgR8MJsWcE7rHIhnV-zHTT4xZcb057s-j5-9Q8d-VfdAk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806516605</pqid></control><display><type>article</type><title>Comparison of Machine Learning Models and the Fatty Liver Index in Predicting Lean Fatty Liver</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Su, Pei-Yuan ; Chen, Yang-Yuan ; Lin, Chun-Yu ; Su, Wei-Wen ; Huang, Siou-Ping ; Yen, Hsu-Heng</creator><creatorcontrib>Su, Pei-Yuan ; Chen, Yang-Yuan ; Lin, Chun-Yu ; Su, Wei-Wen ; Huang, Siou-Ping ; Yen, Hsu-Heng</creatorcontrib><description>The reported prevalence of non-alcoholic fatty liver disease in studies of lean individuals ranges from 7.6% to 19.3%. The aim of the study was to develop machine-learning models for the prediction of fatty liver disease in lean individuals. The present retrospective study included 12,191 lean subjects with a body mass index < 23 kg/m
who had undergone a health checkup from January 2009 to January 2019. Participants were divided into a training (70%, 8533 subjects) and a testing group (30%, 3568 subjects). A total of 27 clinical features were analyzed, except for medical history and history of alcohol or tobacco consumption. Among the 12,191 lean individuals included in the present study, 741 (6.1%) had fatty liver. The machine learning model comprising a two-class neural network using 10 features had the highest area under the receiver operating characteristic curve (AUROC) value (0.885) among all other algorithms. When applied to the testing group, we found the two-class neural network exhibited a slightly higher AUROC value for predicting fatty liver (0.868, 0.841-0.894) compared to the fatty liver index (FLI; 0.852, 0.824-0.81). In conclusion, the two-class neural network had greater predictive value for fatty liver than the FLI in lean individuals.</description><identifier>ISSN: 2075-4418</identifier><identifier>EISSN: 2075-4418</identifier><identifier>DOI: 10.3390/diagnostics13081407</identifier><identifier>PMID: 37189508</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Biochemistry ; Biopsy ; Blood pressure ; Body mass index ; Chi-square test ; Comparative analysis ; Diagnosis ; Fatty liver ; fatty liver index ; Feature selection ; Glucose ; Hemoglobin ; lean fatty liver ; Leukocytes ; Liver cancer ; Liver cirrhosis ; Liver diseases ; Machine learning ; machine learning model ; Metabolic syndrome ; Neural networks ; Support vector machines ; Triglycerides ; Ultrasonic imaging</subject><ispartof>Diagnostics (Basel), 2023-04, Vol.13 (8), p.1407</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-5e4b2aac8f1d72427f779399f7c85dd3f3bed987a0fad638e6fb9f43dfbadfec3</citedby><cites>FETCH-LOGICAL-c567t-5e4b2aac8f1d72427f779399f7c85dd3f3bed987a0fad638e6fb9f43dfbadfec3</cites><orcidid>0000-0002-6860-1051 ; 0000-0003-1021-2114 ; 0000-0002-3494-2245 ; 0000-0001-5936-7112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2806516605/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2806516605?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37189508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Pei-Yuan</creatorcontrib><creatorcontrib>Chen, Yang-Yuan</creatorcontrib><creatorcontrib>Lin, Chun-Yu</creatorcontrib><creatorcontrib>Su, Wei-Wen</creatorcontrib><creatorcontrib>Huang, Siou-Ping</creatorcontrib><creatorcontrib>Yen, Hsu-Heng</creatorcontrib><title>Comparison of Machine Learning Models and the Fatty Liver Index in Predicting Lean Fatty Liver</title><title>Diagnostics (Basel)</title><addtitle>Diagnostics (Basel)</addtitle><description>The reported prevalence of non-alcoholic fatty liver disease in studies of lean individuals ranges from 7.6% to 19.3%. The aim of the study was to develop machine-learning models for the prediction of fatty liver disease in lean individuals. The present retrospective study included 12,191 lean subjects with a body mass index < 23 kg/m
who had undergone a health checkup from January 2009 to January 2019. Participants were divided into a training (70%, 8533 subjects) and a testing group (30%, 3568 subjects). A total of 27 clinical features were analyzed, except for medical history and history of alcohol or tobacco consumption. Among the 12,191 lean individuals included in the present study, 741 (6.1%) had fatty liver. The machine learning model comprising a two-class neural network using 10 features had the highest area under the receiver operating characteristic curve (AUROC) value (0.885) among all other algorithms. When applied to the testing group, we found the two-class neural network exhibited a slightly higher AUROC value for predicting fatty liver (0.868, 0.841-0.894) compared to the fatty liver index (FLI; 0.852, 0.824-0.81). In conclusion, the two-class neural network had greater predictive value for fatty liver than the FLI in lean individuals.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Biochemistry</subject><subject>Biopsy</subject><subject>Blood pressure</subject><subject>Body mass index</subject><subject>Chi-square test</subject><subject>Comparative analysis</subject><subject>Diagnosis</subject><subject>Fatty liver</subject><subject>fatty liver index</subject><subject>Feature selection</subject><subject>Glucose</subject><subject>Hemoglobin</subject><subject>lean fatty liver</subject><subject>Leukocytes</subject><subject>Liver cancer</subject><subject>Liver cirrhosis</subject><subject>Liver diseases</subject><subject>Machine learning</subject><subject>machine learning model</subject><subject>Metabolic syndrome</subject><subject>Neural networks</subject><subject>Support vector machines</subject><subject>Triglycerides</subject><subject>Ultrasonic imaging</subject><issn>2075-4418</issn><issn>2075-4418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptksFuEzEQhlcIRKvSJ0BClrhwSbHX3vX6hKqIQqRUcIAr1sQebxzt2sHeVPTtcUgpCap9sDX-_28046mq14xeca7oe-uhDzFP3mTGaccElc-q85rKZiYE654f3c-qy5w3tCzFeFc3L6szLlmnGtqdVz_mcdxC8jkGEh25BbP2AckSIQUfenIbLQ6ZQLBkWiO5gWm6J0t_h4ksgsVfxAfyNaH1ZtrLiy8ci15VLxwMGS8fzovq-83Hb_PPs-WXT4v59XJmmlZOswbFqgYwnWNW1qKWTkrFlXLSdI213PEVWtVJoA5syzts3Uo5wa1bgXVo-EW1OHBthI3eJj9CutcRvP4TiKnXkEqzBtTCcqRIQUlWCIyDaCWva4XClXi9Z304sLa71YjWYJgSDCfQ05fg17qPd5pRxqWQohDePRBS_LnDPOnRZ4PDAAHjLuu6_FdTi0aoIn37n3QTdymUXhUVbRvWtrT5p-qhVOCDiyWx2UP19T6jKDPRFdXVE6qyLY7exIDOl_iJgR8MJsWcE7rHIhnV-zHTT4xZcb057s-j5-9Q8d-VfdAk</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Su, Pei-Yuan</creator><creator>Chen, Yang-Yuan</creator><creator>Lin, Chun-Yu</creator><creator>Su, Wei-Wen</creator><creator>Huang, Siou-Ping</creator><creator>Yen, Hsu-Heng</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6860-1051</orcidid><orcidid>https://orcid.org/0000-0003-1021-2114</orcidid><orcidid>https://orcid.org/0000-0002-3494-2245</orcidid><orcidid>https://orcid.org/0000-0001-5936-7112</orcidid></search><sort><creationdate>20230401</creationdate><title>Comparison of Machine Learning Models and the Fatty Liver Index in Predicting Lean Fatty Liver</title><author>Su, Pei-Yuan ; Chen, Yang-Yuan ; Lin, Chun-Yu ; Su, Wei-Wen ; Huang, Siou-Ping ; Yen, Hsu-Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-5e4b2aac8f1d72427f779399f7c85dd3f3bed987a0fad638e6fb9f43dfbadfec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Biochemistry</topic><topic>Biopsy</topic><topic>Blood pressure</topic><topic>Body mass index</topic><topic>Chi-square test</topic><topic>Comparative analysis</topic><topic>Diagnosis</topic><topic>Fatty liver</topic><topic>fatty liver index</topic><topic>Feature selection</topic><topic>Glucose</topic><topic>Hemoglobin</topic><topic>lean fatty liver</topic><topic>Leukocytes</topic><topic>Liver cancer</topic><topic>Liver cirrhosis</topic><topic>Liver diseases</topic><topic>Machine learning</topic><topic>machine learning model</topic><topic>Metabolic syndrome</topic><topic>Neural networks</topic><topic>Support vector machines</topic><topic>Triglycerides</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Pei-Yuan</creatorcontrib><creatorcontrib>Chen, Yang-Yuan</creatorcontrib><creatorcontrib>Lin, Chun-Yu</creatorcontrib><creatorcontrib>Su, Wei-Wen</creatorcontrib><creatorcontrib>Huang, Siou-Ping</creatorcontrib><creatorcontrib>Yen, Hsu-Heng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Research Library (ProQuest)</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Diagnostics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Pei-Yuan</au><au>Chen, Yang-Yuan</au><au>Lin, Chun-Yu</au><au>Su, Wei-Wen</au><au>Huang, Siou-Ping</au><au>Yen, Hsu-Heng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Machine Learning Models and the Fatty Liver Index in Predicting Lean Fatty Liver</atitle><jtitle>Diagnostics (Basel)</jtitle><addtitle>Diagnostics (Basel)</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>13</volume><issue>8</issue><spage>1407</spage><pages>1407-</pages><issn>2075-4418</issn><eissn>2075-4418</eissn><abstract>The reported prevalence of non-alcoholic fatty liver disease in studies of lean individuals ranges from 7.6% to 19.3%. The aim of the study was to develop machine-learning models for the prediction of fatty liver disease in lean individuals. The present retrospective study included 12,191 lean subjects with a body mass index < 23 kg/m
who had undergone a health checkup from January 2009 to January 2019. Participants were divided into a training (70%, 8533 subjects) and a testing group (30%, 3568 subjects). A total of 27 clinical features were analyzed, except for medical history and history of alcohol or tobacco consumption. Among the 12,191 lean individuals included in the present study, 741 (6.1%) had fatty liver. The machine learning model comprising a two-class neural network using 10 features had the highest area under the receiver operating characteristic curve (AUROC) value (0.885) among all other algorithms. When applied to the testing group, we found the two-class neural network exhibited a slightly higher AUROC value for predicting fatty liver (0.868, 0.841-0.894) compared to the fatty liver index (FLI; 0.852, 0.824-0.81). In conclusion, the two-class neural network had greater predictive value for fatty liver than the FLI in lean individuals.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37189508</pmid><doi>10.3390/diagnostics13081407</doi><orcidid>https://orcid.org/0000-0002-6860-1051</orcidid><orcidid>https://orcid.org/0000-0003-1021-2114</orcidid><orcidid>https://orcid.org/0000-0002-3494-2245</orcidid><orcidid>https://orcid.org/0000-0001-5936-7112</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-4418 |
ispartof | Diagnostics (Basel), 2023-04, Vol.13 (8), p.1407 |
issn | 2075-4418 2075-4418 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4d3e0e0a971f4313a4673229e4fe0e2c |
source | Publicly Available Content Database; PubMed Central |
subjects | Algorithms Artificial intelligence Biochemistry Biopsy Blood pressure Body mass index Chi-square test Comparative analysis Diagnosis Fatty liver fatty liver index Feature selection Glucose Hemoglobin lean fatty liver Leukocytes Liver cancer Liver cirrhosis Liver diseases Machine learning machine learning model Metabolic syndrome Neural networks Support vector machines Triglycerides Ultrasonic imaging |
title | Comparison of Machine Learning Models and the Fatty Liver Index in Predicting Lean Fatty Liver |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Machine%20Learning%20Models%20and%20the%20Fatty%20Liver%20Index%20in%20Predicting%20Lean%20Fatty%20Liver&rft.jtitle=Diagnostics%20(Basel)&rft.au=Su,%20Pei-Yuan&rft.date=2023-04-01&rft.volume=13&rft.issue=8&rft.spage=1407&rft.pages=1407-&rft.issn=2075-4418&rft.eissn=2075-4418&rft_id=info:doi/10.3390/diagnostics13081407&rft_dat=%3Cgale_doaj_%3EA747443398%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-5e4b2aac8f1d72427f779399f7c85dd3f3bed987a0fad638e6fb9f43dfbadfec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806516605&rft_id=info:pmid/37189508&rft_galeid=A747443398&rfr_iscdi=true |