Loading…

Comparison of Machine Learning Models and the Fatty Liver Index in Predicting Lean Fatty Liver

The reported prevalence of non-alcoholic fatty liver disease in studies of lean individuals ranges from 7.6% to 19.3%. The aim of the study was to develop machine-learning models for the prediction of fatty liver disease in lean individuals. The present retrospective study included 12,191 lean subje...

Full description

Saved in:
Bibliographic Details
Published in:Diagnostics (Basel) 2023-04, Vol.13 (8), p.1407
Main Authors: Su, Pei-Yuan, Chen, Yang-Yuan, Lin, Chun-Yu, Su, Wei-Wen, Huang, Siou-Ping, Yen, Hsu-Heng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c567t-5e4b2aac8f1d72427f779399f7c85dd3f3bed987a0fad638e6fb9f43dfbadfec3
cites cdi_FETCH-LOGICAL-c567t-5e4b2aac8f1d72427f779399f7c85dd3f3bed987a0fad638e6fb9f43dfbadfec3
container_end_page
container_issue 8
container_start_page 1407
container_title Diagnostics (Basel)
container_volume 13
creator Su, Pei-Yuan
Chen, Yang-Yuan
Lin, Chun-Yu
Su, Wei-Wen
Huang, Siou-Ping
Yen, Hsu-Heng
description The reported prevalence of non-alcoholic fatty liver disease in studies of lean individuals ranges from 7.6% to 19.3%. The aim of the study was to develop machine-learning models for the prediction of fatty liver disease in lean individuals. The present retrospective study included 12,191 lean subjects with a body mass index < 23 kg/m who had undergone a health checkup from January 2009 to January 2019. Participants were divided into a training (70%, 8533 subjects) and a testing group (30%, 3568 subjects). A total of 27 clinical features were analyzed, except for medical history and history of alcohol or tobacco consumption. Among the 12,191 lean individuals included in the present study, 741 (6.1%) had fatty liver. The machine learning model comprising a two-class neural network using 10 features had the highest area under the receiver operating characteristic curve (AUROC) value (0.885) among all other algorithms. When applied to the testing group, we found the two-class neural network exhibited a slightly higher AUROC value for predicting fatty liver (0.868, 0.841-0.894) compared to the fatty liver index (FLI; 0.852, 0.824-0.81). In conclusion, the two-class neural network had greater predictive value for fatty liver than the FLI in lean individuals.
doi_str_mv 10.3390/diagnostics13081407
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4d3e0e0a971f4313a4673229e4fe0e2c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747443398</galeid><doaj_id>oai_doaj_org_article_4d3e0e0a971f4313a4673229e4fe0e2c</doaj_id><sourcerecordid>A747443398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-5e4b2aac8f1d72427f779399f7c85dd3f3bed987a0fad638e6fb9f43dfbadfec3</originalsourceid><addsrcrecordid>eNptksFuEzEQhlcIRKvSJ0BClrhwSbHX3vX6hKqIQqRUcIAr1sQebxzt2sHeVPTtcUgpCap9sDX-_28046mq14xeca7oe-uhDzFP3mTGaccElc-q85rKZiYE654f3c-qy5w3tCzFeFc3L6szLlmnGtqdVz_mcdxC8jkGEh25BbP2AckSIQUfenIbLQ6ZQLBkWiO5gWm6J0t_h4ksgsVfxAfyNaH1ZtrLiy8ci15VLxwMGS8fzovq-83Hb_PPs-WXT4v59XJmmlZOswbFqgYwnWNW1qKWTkrFlXLSdI213PEVWtVJoA5syzts3Uo5wa1bgXVo-EW1OHBthI3eJj9CutcRvP4TiKnXkEqzBtTCcqRIQUlWCIyDaCWva4XClXi9Z304sLa71YjWYJgSDCfQ05fg17qPd5pRxqWQohDePRBS_LnDPOnRZ4PDAAHjLuu6_FdTi0aoIn37n3QTdymUXhUVbRvWtrT5p-qhVOCDiyWx2UP19T6jKDPRFdXVE6qyLY7exIDOl_iJgR8MJsWcE7rHIhnV-zHTT4xZcb057s-j5-9Q8d-VfdAk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806516605</pqid></control><display><type>article</type><title>Comparison of Machine Learning Models and the Fatty Liver Index in Predicting Lean Fatty Liver</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Su, Pei-Yuan ; Chen, Yang-Yuan ; Lin, Chun-Yu ; Su, Wei-Wen ; Huang, Siou-Ping ; Yen, Hsu-Heng</creator><creatorcontrib>Su, Pei-Yuan ; Chen, Yang-Yuan ; Lin, Chun-Yu ; Su, Wei-Wen ; Huang, Siou-Ping ; Yen, Hsu-Heng</creatorcontrib><description>The reported prevalence of non-alcoholic fatty liver disease in studies of lean individuals ranges from 7.6% to 19.3%. The aim of the study was to develop machine-learning models for the prediction of fatty liver disease in lean individuals. The present retrospective study included 12,191 lean subjects with a body mass index &lt; 23 kg/m who had undergone a health checkup from January 2009 to January 2019. Participants were divided into a training (70%, 8533 subjects) and a testing group (30%, 3568 subjects). A total of 27 clinical features were analyzed, except for medical history and history of alcohol or tobacco consumption. Among the 12,191 lean individuals included in the present study, 741 (6.1%) had fatty liver. The machine learning model comprising a two-class neural network using 10 features had the highest area under the receiver operating characteristic curve (AUROC) value (0.885) among all other algorithms. When applied to the testing group, we found the two-class neural network exhibited a slightly higher AUROC value for predicting fatty liver (0.868, 0.841-0.894) compared to the fatty liver index (FLI; 0.852, 0.824-0.81). In conclusion, the two-class neural network had greater predictive value for fatty liver than the FLI in lean individuals.</description><identifier>ISSN: 2075-4418</identifier><identifier>EISSN: 2075-4418</identifier><identifier>DOI: 10.3390/diagnostics13081407</identifier><identifier>PMID: 37189508</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Biochemistry ; Biopsy ; Blood pressure ; Body mass index ; Chi-square test ; Comparative analysis ; Diagnosis ; Fatty liver ; fatty liver index ; Feature selection ; Glucose ; Hemoglobin ; lean fatty liver ; Leukocytes ; Liver cancer ; Liver cirrhosis ; Liver diseases ; Machine learning ; machine learning model ; Metabolic syndrome ; Neural networks ; Support vector machines ; Triglycerides ; Ultrasonic imaging</subject><ispartof>Diagnostics (Basel), 2023-04, Vol.13 (8), p.1407</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-5e4b2aac8f1d72427f779399f7c85dd3f3bed987a0fad638e6fb9f43dfbadfec3</citedby><cites>FETCH-LOGICAL-c567t-5e4b2aac8f1d72427f779399f7c85dd3f3bed987a0fad638e6fb9f43dfbadfec3</cites><orcidid>0000-0002-6860-1051 ; 0000-0003-1021-2114 ; 0000-0002-3494-2245 ; 0000-0001-5936-7112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2806516605/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2806516605?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37189508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Pei-Yuan</creatorcontrib><creatorcontrib>Chen, Yang-Yuan</creatorcontrib><creatorcontrib>Lin, Chun-Yu</creatorcontrib><creatorcontrib>Su, Wei-Wen</creatorcontrib><creatorcontrib>Huang, Siou-Ping</creatorcontrib><creatorcontrib>Yen, Hsu-Heng</creatorcontrib><title>Comparison of Machine Learning Models and the Fatty Liver Index in Predicting Lean Fatty Liver</title><title>Diagnostics (Basel)</title><addtitle>Diagnostics (Basel)</addtitle><description>The reported prevalence of non-alcoholic fatty liver disease in studies of lean individuals ranges from 7.6% to 19.3%. The aim of the study was to develop machine-learning models for the prediction of fatty liver disease in lean individuals. The present retrospective study included 12,191 lean subjects with a body mass index &lt; 23 kg/m who had undergone a health checkup from January 2009 to January 2019. Participants were divided into a training (70%, 8533 subjects) and a testing group (30%, 3568 subjects). A total of 27 clinical features were analyzed, except for medical history and history of alcohol or tobacco consumption. Among the 12,191 lean individuals included in the present study, 741 (6.1%) had fatty liver. The machine learning model comprising a two-class neural network using 10 features had the highest area under the receiver operating characteristic curve (AUROC) value (0.885) among all other algorithms. When applied to the testing group, we found the two-class neural network exhibited a slightly higher AUROC value for predicting fatty liver (0.868, 0.841-0.894) compared to the fatty liver index (FLI; 0.852, 0.824-0.81). In conclusion, the two-class neural network had greater predictive value for fatty liver than the FLI in lean individuals.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Biochemistry</subject><subject>Biopsy</subject><subject>Blood pressure</subject><subject>Body mass index</subject><subject>Chi-square test</subject><subject>Comparative analysis</subject><subject>Diagnosis</subject><subject>Fatty liver</subject><subject>fatty liver index</subject><subject>Feature selection</subject><subject>Glucose</subject><subject>Hemoglobin</subject><subject>lean fatty liver</subject><subject>Leukocytes</subject><subject>Liver cancer</subject><subject>Liver cirrhosis</subject><subject>Liver diseases</subject><subject>Machine learning</subject><subject>machine learning model</subject><subject>Metabolic syndrome</subject><subject>Neural networks</subject><subject>Support vector machines</subject><subject>Triglycerides</subject><subject>Ultrasonic imaging</subject><issn>2075-4418</issn><issn>2075-4418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptksFuEzEQhlcIRKvSJ0BClrhwSbHX3vX6hKqIQqRUcIAr1sQebxzt2sHeVPTtcUgpCap9sDX-_28046mq14xeca7oe-uhDzFP3mTGaccElc-q85rKZiYE654f3c-qy5w3tCzFeFc3L6szLlmnGtqdVz_mcdxC8jkGEh25BbP2AckSIQUfenIbLQ6ZQLBkWiO5gWm6J0t_h4ksgsVfxAfyNaH1ZtrLiy8ci15VLxwMGS8fzovq-83Hb_PPs-WXT4v59XJmmlZOswbFqgYwnWNW1qKWTkrFlXLSdI213PEVWtVJoA5syzts3Uo5wa1bgXVo-EW1OHBthI3eJj9CutcRvP4TiKnXkEqzBtTCcqRIQUlWCIyDaCWva4XClXi9Z304sLa71YjWYJgSDCfQ05fg17qPd5pRxqWQohDePRBS_LnDPOnRZ4PDAAHjLuu6_FdTi0aoIn37n3QTdymUXhUVbRvWtrT5p-qhVOCDiyWx2UP19T6jKDPRFdXVE6qyLY7exIDOl_iJgR8MJsWcE7rHIhnV-zHTT4xZcb057s-j5-9Q8d-VfdAk</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Su, Pei-Yuan</creator><creator>Chen, Yang-Yuan</creator><creator>Lin, Chun-Yu</creator><creator>Su, Wei-Wen</creator><creator>Huang, Siou-Ping</creator><creator>Yen, Hsu-Heng</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6860-1051</orcidid><orcidid>https://orcid.org/0000-0003-1021-2114</orcidid><orcidid>https://orcid.org/0000-0002-3494-2245</orcidid><orcidid>https://orcid.org/0000-0001-5936-7112</orcidid></search><sort><creationdate>20230401</creationdate><title>Comparison of Machine Learning Models and the Fatty Liver Index in Predicting Lean Fatty Liver</title><author>Su, Pei-Yuan ; Chen, Yang-Yuan ; Lin, Chun-Yu ; Su, Wei-Wen ; Huang, Siou-Ping ; Yen, Hsu-Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-5e4b2aac8f1d72427f779399f7c85dd3f3bed987a0fad638e6fb9f43dfbadfec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Biochemistry</topic><topic>Biopsy</topic><topic>Blood pressure</topic><topic>Body mass index</topic><topic>Chi-square test</topic><topic>Comparative analysis</topic><topic>Diagnosis</topic><topic>Fatty liver</topic><topic>fatty liver index</topic><topic>Feature selection</topic><topic>Glucose</topic><topic>Hemoglobin</topic><topic>lean fatty liver</topic><topic>Leukocytes</topic><topic>Liver cancer</topic><topic>Liver cirrhosis</topic><topic>Liver diseases</topic><topic>Machine learning</topic><topic>machine learning model</topic><topic>Metabolic syndrome</topic><topic>Neural networks</topic><topic>Support vector machines</topic><topic>Triglycerides</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Pei-Yuan</creatorcontrib><creatorcontrib>Chen, Yang-Yuan</creatorcontrib><creatorcontrib>Lin, Chun-Yu</creatorcontrib><creatorcontrib>Su, Wei-Wen</creatorcontrib><creatorcontrib>Huang, Siou-Ping</creatorcontrib><creatorcontrib>Yen, Hsu-Heng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Research Library (ProQuest)</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Diagnostics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Pei-Yuan</au><au>Chen, Yang-Yuan</au><au>Lin, Chun-Yu</au><au>Su, Wei-Wen</au><au>Huang, Siou-Ping</au><au>Yen, Hsu-Heng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Machine Learning Models and the Fatty Liver Index in Predicting Lean Fatty Liver</atitle><jtitle>Diagnostics (Basel)</jtitle><addtitle>Diagnostics (Basel)</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>13</volume><issue>8</issue><spage>1407</spage><pages>1407-</pages><issn>2075-4418</issn><eissn>2075-4418</eissn><abstract>The reported prevalence of non-alcoholic fatty liver disease in studies of lean individuals ranges from 7.6% to 19.3%. The aim of the study was to develop machine-learning models for the prediction of fatty liver disease in lean individuals. The present retrospective study included 12,191 lean subjects with a body mass index &lt; 23 kg/m who had undergone a health checkup from January 2009 to January 2019. Participants were divided into a training (70%, 8533 subjects) and a testing group (30%, 3568 subjects). A total of 27 clinical features were analyzed, except for medical history and history of alcohol or tobacco consumption. Among the 12,191 lean individuals included in the present study, 741 (6.1%) had fatty liver. The machine learning model comprising a two-class neural network using 10 features had the highest area under the receiver operating characteristic curve (AUROC) value (0.885) among all other algorithms. When applied to the testing group, we found the two-class neural network exhibited a slightly higher AUROC value for predicting fatty liver (0.868, 0.841-0.894) compared to the fatty liver index (FLI; 0.852, 0.824-0.81). In conclusion, the two-class neural network had greater predictive value for fatty liver than the FLI in lean individuals.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37189508</pmid><doi>10.3390/diagnostics13081407</doi><orcidid>https://orcid.org/0000-0002-6860-1051</orcidid><orcidid>https://orcid.org/0000-0003-1021-2114</orcidid><orcidid>https://orcid.org/0000-0002-3494-2245</orcidid><orcidid>https://orcid.org/0000-0001-5936-7112</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4418
ispartof Diagnostics (Basel), 2023-04, Vol.13 (8), p.1407
issn 2075-4418
2075-4418
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4d3e0e0a971f4313a4673229e4fe0e2c
source Publicly Available Content Database; PubMed Central
subjects Algorithms
Artificial intelligence
Biochemistry
Biopsy
Blood pressure
Body mass index
Chi-square test
Comparative analysis
Diagnosis
Fatty liver
fatty liver index
Feature selection
Glucose
Hemoglobin
lean fatty liver
Leukocytes
Liver cancer
Liver cirrhosis
Liver diseases
Machine learning
machine learning model
Metabolic syndrome
Neural networks
Support vector machines
Triglycerides
Ultrasonic imaging
title Comparison of Machine Learning Models and the Fatty Liver Index in Predicting Lean Fatty Liver
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Machine%20Learning%20Models%20and%20the%20Fatty%20Liver%20Index%20in%20Predicting%20Lean%20Fatty%20Liver&rft.jtitle=Diagnostics%20(Basel)&rft.au=Su,%20Pei-Yuan&rft.date=2023-04-01&rft.volume=13&rft.issue=8&rft.spage=1407&rft.pages=1407-&rft.issn=2075-4418&rft.eissn=2075-4418&rft_id=info:doi/10.3390/diagnostics13081407&rft_dat=%3Cgale_doaj_%3EA747443398%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-5e4b2aac8f1d72427f779399f7c85dd3f3bed987a0fad638e6fb9f43dfbadfec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806516605&rft_id=info:pmid/37189508&rft_galeid=A747443398&rfr_iscdi=true