Loading…
Modified One-Parameter Liu Estimator for the Linear Regression Model
Motivated by the ridge regression (Hoerl and Kennard, 1970) and Liu (1993) estimators, this paper proposes a modified Liu estimator to solve the multicollinearity problem for the linear regression model. This modification places this estimator in the class of the ridge and Liu estimators with a sing...
Saved in:
Published in: | Modelling and simulation in engineering 2020, Vol.2020, p.1-17 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c524t-a8fac6fafc022aa91d58bb9403605642402052c3f71264ca191c26c8f85e333c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c524t-a8fac6fafc022aa91d58bb9403605642402052c3f71264ca191c26c8f85e333c3 |
container_end_page | 17 |
container_issue | |
container_start_page | 1 |
container_title | Modelling and simulation in engineering |
container_volume | 2020 |
creator | Lukman, Adewale F. Kibria, B. M. Golam Ayinde, Kayode Jegede, Segun L. |
description | Motivated by the ridge regression (Hoerl and Kennard, 1970) and Liu (1993) estimators, this paper proposes a modified Liu estimator to solve the multicollinearity problem for the linear regression model. This modification places this estimator in the class of the ridge and Liu estimators with a single biasing parameter. Theoretical comparisons, real-life application, and simulation results show that it consistently dominates the usual Liu estimator. Under some conditions, it performs better than the ridge regression estimators in the smaller MSE sense. Two real-life data are analyzed to illustrate the findings of the paper and the performances of the estimators assessed by MSE and the mean squared prediction error. The application result agrees with the theoretical and simulation results. |
doi_str_mv | 10.1155/2020/9574304 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4d406ab2a717416c80593d2cc7dd5b51</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4d406ab2a717416c80593d2cc7dd5b51</doaj_id><sourcerecordid>2438586990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-a8fac6fafc022aa91d58bb9403605642402052c3f71264ca191c26c8f85e333c3</originalsourceid><addsrcrecordid>eNp9kEtLAzEYRQdRsNTu_AEDLnVs3jNZSq1aqFRE1-GbPNqUdlIzU8R_b-pUly5CwsfJyc3NskuMbjHmfEwQQWPJS0YRO8kGWFRlwQXip79nLvF5NmpbXyPGSk6pQIPs_jkY77w1-aKxxQtE2NrOxnzu9_m07fwWuhBzl1a3smnaWIj5q11Gm0ShydN1u7nIzhxsWjs67sPs_WH6Nnkq5ovH2eRuXmhOWFdA5UALB04jQgAkNryqa8lQSsIFIyz9gBNNXYmJYBqwxJoIXbmKW0qppsNs1ntNgLXaxZQufqkAXv0MQlwqiJ3XG6uYYUhATaDEJcNJgrikhmhdGsNrjpPrqnftYvjY27ZT67CPTYqvCKMVr4SUKFE3PaVjaNto3d-rGKlD7epQuzrWnvDrHl_5xsCn_5_-BoHdftA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438586990</pqid></control><display><type>article</type><title>Modified One-Parameter Liu Estimator for the Linear Regression Model</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><creator>Lukman, Adewale F. ; Kibria, B. M. Golam ; Ayinde, Kayode ; Jegede, Segun L.</creator><contributor>Trabia, Mohamed B. ; Mohamed B Trabia</contributor><creatorcontrib>Lukman, Adewale F. ; Kibria, B. M. Golam ; Ayinde, Kayode ; Jegede, Segun L. ; Trabia, Mohamed B. ; Mohamed B Trabia</creatorcontrib><description>Motivated by the ridge regression (Hoerl and Kennard, 1970) and Liu (1993) estimators, this paper proposes a modified Liu estimator to solve the multicollinearity problem for the linear regression model. This modification places this estimator in the class of the ridge and Liu estimators with a single biasing parameter. Theoretical comparisons, real-life application, and simulation results show that it consistently dominates the usual Liu estimator. Under some conditions, it performs better than the ridge regression estimators in the smaller MSE sense. Two real-life data are analyzed to illustrate the findings of the paper and the performances of the estimators assessed by MSE and the mean squared prediction error. The application result agrees with the theoretical and simulation results.</description><identifier>ISSN: 1687-5591</identifier><identifier>EISSN: 1687-5605</identifier><identifier>DOI: 10.1155/2020/9574304</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Bias ; Computer simulation ; Estimators ; Mean square errors ; Parameter estimation ; Parameter modification ; Regression analysis ; Regression models ; Simulation</subject><ispartof>Modelling and simulation in engineering, 2020, Vol.2020, p.1-17</ispartof><rights>Copyright © 2020 Adewale F. Lukman et al.</rights><rights>Copyright © 2020 Adewale F. Lukman et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-a8fac6fafc022aa91d58bb9403605642402052c3f71264ca191c26c8f85e333c3</citedby><cites>FETCH-LOGICAL-c524t-a8fac6fafc022aa91d58bb9403605642402052c3f71264ca191c26c8f85e333c3</cites><orcidid>0000-0002-9973-1377 ; 0000-0003-2881-1297 ; 0000-0002-6073-1978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2438586990/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2438586990?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Trabia, Mohamed B.</contributor><contributor>Mohamed B Trabia</contributor><creatorcontrib>Lukman, Adewale F.</creatorcontrib><creatorcontrib>Kibria, B. M. Golam</creatorcontrib><creatorcontrib>Ayinde, Kayode</creatorcontrib><creatorcontrib>Jegede, Segun L.</creatorcontrib><title>Modified One-Parameter Liu Estimator for the Linear Regression Model</title><title>Modelling and simulation in engineering</title><description>Motivated by the ridge regression (Hoerl and Kennard, 1970) and Liu (1993) estimators, this paper proposes a modified Liu estimator to solve the multicollinearity problem for the linear regression model. This modification places this estimator in the class of the ridge and Liu estimators with a single biasing parameter. Theoretical comparisons, real-life application, and simulation results show that it consistently dominates the usual Liu estimator. Under some conditions, it performs better than the ridge regression estimators in the smaller MSE sense. Two real-life data are analyzed to illustrate the findings of the paper and the performances of the estimators assessed by MSE and the mean squared prediction error. The application result agrees with the theoretical and simulation results.</description><subject>Bias</subject><subject>Computer simulation</subject><subject>Estimators</subject><subject>Mean square errors</subject><subject>Parameter estimation</subject><subject>Parameter modification</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Simulation</subject><issn>1687-5591</issn><issn>1687-5605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kEtLAzEYRQdRsNTu_AEDLnVs3jNZSq1aqFRE1-GbPNqUdlIzU8R_b-pUly5CwsfJyc3NskuMbjHmfEwQQWPJS0YRO8kGWFRlwQXip79nLvF5NmpbXyPGSk6pQIPs_jkY77w1-aKxxQtE2NrOxnzu9_m07fwWuhBzl1a3smnaWIj5q11Gm0ShydN1u7nIzhxsWjs67sPs_WH6Nnkq5ovH2eRuXmhOWFdA5UALB04jQgAkNryqa8lQSsIFIyz9gBNNXYmJYBqwxJoIXbmKW0qppsNs1ntNgLXaxZQufqkAXv0MQlwqiJ3XG6uYYUhATaDEJcNJgrikhmhdGsNrjpPrqnftYvjY27ZT67CPTYqvCKMVr4SUKFE3PaVjaNto3d-rGKlD7epQuzrWnvDrHl_5xsCn_5_-BoHdftA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Lukman, Adewale F.</creator><creator>Kibria, B. M. Golam</creator><creator>Ayinde, Kayode</creator><creator>Jegede, Segun L.</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9973-1377</orcidid><orcidid>https://orcid.org/0000-0003-2881-1297</orcidid><orcidid>https://orcid.org/0000-0002-6073-1978</orcidid></search><sort><creationdate>2020</creationdate><title>Modified One-Parameter Liu Estimator for the Linear Regression Model</title><author>Lukman, Adewale F. ; Kibria, B. M. Golam ; Ayinde, Kayode ; Jegede, Segun L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-a8fac6fafc022aa91d58bb9403605642402052c3f71264ca191c26c8f85e333c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bias</topic><topic>Computer simulation</topic><topic>Estimators</topic><topic>Mean square errors</topic><topic>Parameter estimation</topic><topic>Parameter modification</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lukman, Adewale F.</creatorcontrib><creatorcontrib>Kibria, B. M. Golam</creatorcontrib><creatorcontrib>Ayinde, Kayode</creatorcontrib><creatorcontrib>Jegede, Segun L.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>Modelling and simulation in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lukman, Adewale F.</au><au>Kibria, B. M. Golam</au><au>Ayinde, Kayode</au><au>Jegede, Segun L.</au><au>Trabia, Mohamed B.</au><au>Mohamed B Trabia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified One-Parameter Liu Estimator for the Linear Regression Model</atitle><jtitle>Modelling and simulation in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1687-5591</issn><eissn>1687-5605</eissn><abstract>Motivated by the ridge regression (Hoerl and Kennard, 1970) and Liu (1993) estimators, this paper proposes a modified Liu estimator to solve the multicollinearity problem for the linear regression model. This modification places this estimator in the class of the ridge and Liu estimators with a single biasing parameter. Theoretical comparisons, real-life application, and simulation results show that it consistently dominates the usual Liu estimator. Under some conditions, it performs better than the ridge regression estimators in the smaller MSE sense. Two real-life data are analyzed to illustrate the findings of the paper and the performances of the estimators assessed by MSE and the mean squared prediction error. The application result agrees with the theoretical and simulation results.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2020/9574304</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9973-1377</orcidid><orcidid>https://orcid.org/0000-0003-2881-1297</orcidid><orcidid>https://orcid.org/0000-0002-6073-1978</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5591 |
ispartof | Modelling and simulation in engineering, 2020, Vol.2020, p.1-17 |
issn | 1687-5591 1687-5605 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4d406ab2a717416c80593d2cc7dd5b51 |
source | Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database |
subjects | Bias Computer simulation Estimators Mean square errors Parameter estimation Parameter modification Regression analysis Regression models Simulation |
title | Modified One-Parameter Liu Estimator for the Linear Regression Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20One-Parameter%20Liu%20Estimator%20for%20the%20Linear%20Regression%20Model&rft.jtitle=Modelling%20and%20simulation%20in%20engineering&rft.au=Lukman,%20Adewale%20F.&rft.date=2020&rft.volume=2020&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1687-5591&rft.eissn=1687-5605&rft_id=info:doi/10.1155/2020/9574304&rft_dat=%3Cproquest_doaj_%3E2438586990%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-a8fac6fafc022aa91d58bb9403605642402052c3f71264ca191c26c8f85e333c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438586990&rft_id=info:pmid/&rfr_iscdi=true |