Loading…

Numerical Implementation of Stochastic Operational Matrix Driven by a Fractional Brownian Motion for Solving a Stochastic Differential Equation

An efficient method to determine a numerical solution of a stochastic differential equation (SDE) driven by fractional Brownian motion (FBM) with Hurst parameter H ∈ ( 1 / 2 , 1 ) and n independent one-dimensional standard Brownian motion (SBM) is proposed. The method is stated via a stochastic oper...

Full description

Saved in:
Bibliographic Details
Published in:Abstract and Applied Analysis 2014-01, Vol.2014 (2014), p.153-163-816
Main Authors: Ezzati, R., Sadati, Z., Khodabin, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a591t-f58917b585813195923ff2e1d24c2ff46d7c5f96f18ea8d474423a3e2de58b283
cites cdi_FETCH-LOGICAL-a591t-f58917b585813195923ff2e1d24c2ff46d7c5f96f18ea8d474423a3e2de58b283
container_end_page 163-816
container_issue 2014
container_start_page 153
container_title Abstract and Applied Analysis
container_volume 2014
creator Ezzati, R.
Sadati, Z.
Khodabin, M.
description An efficient method to determine a numerical solution of a stochastic differential equation (SDE) driven by fractional Brownian motion (FBM) with Hurst parameter H ∈ ( 1 / 2 , 1 ) and n independent one-dimensional standard Brownian motion (SBM) is proposed. The method is stated via a stochastic operational matrix based on the block pulse functions (BPFs). With using this approach, the SDE is reduced to a stochastic linear system of m equations and m unknowns. Then, the error analysis is demonstrated by some theorems and defnitions. Finally, the numerical examples demonstrate applicability and accuracy of this method.
doi_str_mv 10.1155/2014/523163
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4d5479f19c30462787e07d946c75ce5f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A426543498</galeid><airiti_id>P20160825001_201412_201609080014_201609080014_153_163_816</airiti_id><doaj_id>oai_doaj_org_article_4d5479f19c30462787e07d946c75ce5f</doaj_id><sourcerecordid>A426543498</sourcerecordid><originalsourceid>FETCH-LOGICAL-a591t-f58917b585813195923ff2e1d24c2ff46d7c5f96f18ea8d474423a3e2de58b283</originalsourceid><addsrcrecordid>eNqFkktP3DAQgKOqlUppT71XkXprteBnYt8Ky2ulpSBRztasM168ysaLk4XyK_qX6yQrCqcqUuxMPn8zY02WfabkgFIpDxmh4lAyTgv-JtujhSonRBD9Nu2JkhPOS_k--9C2K0IIL4XYy_783K4xegt1Pltvalxj00HnQ5MHl990wd5B23mbX20wDvEEXkIX_e_8JPoHbPLFUw75WQS7-3scw2Pjockvw-BxIeY3oX7wzTKBL5Qn3jmMKZ9Pp07vt4P-Y_bOQd3ip926n92enf6aXkzmV-ez6dF8AlLTbuKk0rRcSCUV5VRLzbhzDGnFhGXOiaIqrXS6cFQhqEqkXhkHjqxCqRZM8f1sNnqrACuziX4N8ckE8GYIhLg0EFOVNRpRSVFqR7XlRBSsVCWSstKisKW0KF1y_RhdmxhWaDvc2tpXr6TT2_kuulsAwFBBWUGkJjwpvj4r7rfYdmYVtjFdZ2uoLPryKS8TdTBSS0h1-caFLt17eipcexsadD7FjwQrpOBC911-Hw_YGNo2onsuihLTT4zpJ8aME5PobyN955sKHv1_4C8jjAlBBy9gzhXrgesRAB995_81dJ00BVFMEkIHJWVmCGmiSJ_h1QeV3KR8RqXXXzRY388</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564744137</pqid></control><display><type>article</type><title>Numerical Implementation of Stochastic Operational Matrix Driven by a Fractional Brownian Motion for Solving a Stochastic Differential Equation</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Ezzati, R. ; Sadati, Z. ; Khodabin, M.</creator><contributor>Karimi, Hamid Reza</contributor><creatorcontrib>Ezzati, R. ; Sadati, Z. ; Khodabin, M. ; Karimi, Hamid Reza</creatorcontrib><description>An efficient method to determine a numerical solution of a stochastic differential equation (SDE) driven by fractional Brownian motion (FBM) with Hurst parameter H ∈ ( 1 / 2 , 1 ) and n independent one-dimensional standard Brownian motion (SBM) is proposed. The method is stated via a stochastic operational matrix based on the block pulse functions (BPFs). With using this approach, the SDE is reduced to a stochastic linear system of m equations and m unknowns. Then, the error analysis is demonstrated by some theorems and defnitions. Finally, the numerical examples demonstrate applicability and accuracy of this method.</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><identifier>DOI: 10.1155/2014/523163</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Brownian motion ; Confidence intervals ; Mathematical research ; Matrices ; Numerical analysis ; Standard deviation ; Stochastic differential equations</subject><ispartof>Abstract and Applied Analysis, 2014-01, Vol.2014 (2014), p.153-163-816</ispartof><rights>Copyright © 2014 R. Ezzati et al.</rights><rights>COPYRIGHT 2014 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2014 R. Ezzati et al. R. Ezzati et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright 2013 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a591t-f58917b585813195923ff2e1d24c2ff46d7c5f96f18ea8d474423a3e2de58b283</citedby><cites>FETCH-LOGICAL-a591t-f58917b585813195923ff2e1d24c2ff46d7c5f96f18ea8d474423a3e2de58b283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1564744137/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1564744137?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Karimi, Hamid Reza</contributor><creatorcontrib>Ezzati, R.</creatorcontrib><creatorcontrib>Sadati, Z.</creatorcontrib><creatorcontrib>Khodabin, M.</creatorcontrib><title>Numerical Implementation of Stochastic Operational Matrix Driven by a Fractional Brownian Motion for Solving a Stochastic Differential Equation</title><title>Abstract and Applied Analysis</title><description>An efficient method to determine a numerical solution of a stochastic differential equation (SDE) driven by fractional Brownian motion (FBM) with Hurst parameter H ∈ ( 1 / 2 , 1 ) and n independent one-dimensional standard Brownian motion (SBM) is proposed. The method is stated via a stochastic operational matrix based on the block pulse functions (BPFs). With using this approach, the SDE is reduced to a stochastic linear system of m equations and m unknowns. Then, the error analysis is demonstrated by some theorems and defnitions. Finally, the numerical examples demonstrate applicability and accuracy of this method.</description><subject>Brownian motion</subject><subject>Confidence intervals</subject><subject>Mathematical research</subject><subject>Matrices</subject><subject>Numerical analysis</subject><subject>Standard deviation</subject><subject>Stochastic differential equations</subject><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkktP3DAQgKOqlUppT71XkXprteBnYt8Ky2ulpSBRztasM168ysaLk4XyK_qX6yQrCqcqUuxMPn8zY02WfabkgFIpDxmh4lAyTgv-JtujhSonRBD9Nu2JkhPOS_k--9C2K0IIL4XYy_783K4xegt1Pltvalxj00HnQ5MHl990wd5B23mbX20wDvEEXkIX_e_8JPoHbPLFUw75WQS7-3scw2Pjockvw-BxIeY3oX7wzTKBL5Qn3jmMKZ9Pp07vt4P-Y_bOQd3ip926n92enf6aXkzmV-ez6dF8AlLTbuKk0rRcSCUV5VRLzbhzDGnFhGXOiaIqrXS6cFQhqEqkXhkHjqxCqRZM8f1sNnqrACuziX4N8ckE8GYIhLg0EFOVNRpRSVFqR7XlRBSsVCWSstKisKW0KF1y_RhdmxhWaDvc2tpXr6TT2_kuulsAwFBBWUGkJjwpvj4r7rfYdmYVtjFdZ2uoLPryKS8TdTBSS0h1-caFLt17eipcexsadD7FjwQrpOBC911-Hw_YGNo2onsuihLTT4zpJ8aME5PobyN955sKHv1_4C8jjAlBBy9gzhXrgesRAB995_81dJ00BVFMEkIHJWVmCGmiSJ_h1QeV3KR8RqXXXzRY388</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Ezzati, R.</creator><creator>Sadati, Z.</creator><creator>Khodabin, M.</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>Numerical Implementation of Stochastic Operational Matrix Driven by a Fractional Brownian Motion for Solving a Stochastic Differential Equation</title><author>Ezzati, R. ; Sadati, Z. ; Khodabin, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a591t-f58917b585813195923ff2e1d24c2ff46d7c5f96f18ea8d474423a3e2de58b283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Brownian motion</topic><topic>Confidence intervals</topic><topic>Mathematical research</topic><topic>Matrices</topic><topic>Numerical analysis</topic><topic>Standard deviation</topic><topic>Stochastic differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ezzati, R.</creatorcontrib><creatorcontrib>Sadati, Z.</creatorcontrib><creatorcontrib>Khodabin, M.</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Abstract and Applied Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ezzati, R.</au><au>Sadati, Z.</au><au>Khodabin, M.</au><au>Karimi, Hamid Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Implementation of Stochastic Operational Matrix Driven by a Fractional Brownian Motion for Solving a Stochastic Differential Equation</atitle><jtitle>Abstract and Applied Analysis</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>153</spage><epage>163-816</epage><pages>153-163-816</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>An efficient method to determine a numerical solution of a stochastic differential equation (SDE) driven by fractional Brownian motion (FBM) with Hurst parameter H ∈ ( 1 / 2 , 1 ) and n independent one-dimensional standard Brownian motion (SBM) is proposed. The method is stated via a stochastic operational matrix based on the block pulse functions (BPFs). With using this approach, the SDE is reduced to a stochastic linear system of m equations and m unknowns. Then, the error analysis is demonstrated by some theorems and defnitions. Finally, the numerical examples demonstrate applicability and accuracy of this method.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2014/523163</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1085-3375
ispartof Abstract and Applied Analysis, 2014-01, Vol.2014 (2014), p.153-163-816
issn 1085-3375
1687-0409
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4d5479f19c30462787e07d946c75ce5f
source Publicly Available Content Database; Wiley Open Access
subjects Brownian motion
Confidence intervals
Mathematical research
Matrices
Numerical analysis
Standard deviation
Stochastic differential equations
title Numerical Implementation of Stochastic Operational Matrix Driven by a Fractional Brownian Motion for Solving a Stochastic Differential Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A51%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Implementation%20of%20Stochastic%20Operational%20Matrix%20Driven%20by%20a%20Fractional%20Brownian%20Motion%20for%20Solving%20a%20Stochastic%20Differential%20Equation&rft.jtitle=Abstract%20and%20Applied%20Analysis&rft.au=Ezzati,%20R.&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=153&rft.epage=163-816&rft.pages=153-163-816&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/10.1155/2014/523163&rft_dat=%3Cgale_doaj_%3EA426543498%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a591t-f58917b585813195923ff2e1d24c2ff46d7c5f96f18ea8d474423a3e2de58b283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1564744137&rft_id=info:pmid/&rft_galeid=A426543498&rft_airiti_id=P20160825001_201412_201609080014_201609080014_153_163_816&rfr_iscdi=true