Loading…
Vitamin E deficiency and risk of equine motor neuron disease
Equine motor neuron disease (EMND) is a spontaneous neurologic disorder of adult horses which results from the degeneration of motor neurons in the spinal cord and brain stem. Clinical manifestations, pathological findings, and epidemiologic attributes resemble those of human motor neuron disease (M...
Saved in:
Published in: | Acta veterinaria scandinavica 2007-07, Vol.49 (1), p.17-17, Article 17 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Equine motor neuron disease (EMND) is a spontaneous neurologic disorder of adult horses which results from the degeneration of motor neurons in the spinal cord and brain stem. Clinical manifestations, pathological findings, and epidemiologic attributes resemble those of human motor neuron disease (MND). As in MND the etiology of the disease is not known. We evaluated the predisposition role of vitamin E deficiency on the risk of EMND.
Eleven horses at risk of EMND were identified and enrolled in a field trial at different times. The horses were maintained on a diet deficient in vitamin E and monitored periodically for levels of antioxidants--alpha-tocopherols, vitamins A, C, beta-carotene, glutathione peroxidase (GSH-Px), and erythrocytic superoxide dismutase (SOD1). In addition to the self-control another parallel control group was included. Survival analysis was used to assess the probability of developing EMND past a specific period of time.
There was large variability in the levels of vitamins A and C, beta-carotene, GSH-Px, and SOD1. Plasma vitamin E levels dropped significantly over time. Ten horses developed EMND within 44 months of enrollment. The median time to develop EMND was 38.5 months. None of the controls developed EMND.
The study elucidated the role of vitamin E deficiency on the risk of EMND. Reproducing this disease in a natural animal model for the first time will enable us to carry out studies to test specific hypotheses regarding the mechanism by which the disease occurs. |
---|---|
ISSN: | 1751-0147 0044-605X 1751-0147 |
DOI: | 10.1186/1751-0147-49-17 |