Loading…

Insights into particle dispersion and damage mechanisms in functionally graded metal matrix composites with random microstructure-based finite element model

This study investigates the impact of Al 2 O 3 particle volume fraction and distribution on the deformation and damage of particle-reinforced metal matrix composites, particularly in the context of functionally graded metal matrix composites. In this study, a two-dimensional nonlinear random microst...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-09, Vol.14 (1), p.20835-20, Article 20835
Main Authors: Naguib, M. E., Gad, S. I., Megahed, M., Agwa, M. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c366t-3a2bdb08d5b345431da47539989437f29d67536ca4d55e3ee00572d20ab4f7bb3
container_end_page 20
container_issue 1
container_start_page 20835
container_title Scientific reports
container_volume 14
creator Naguib, M. E.
Gad, S. I.
Megahed, M.
Agwa, M. A.
description This study investigates the impact of Al 2 O 3 particle volume fraction and distribution on the deformation and damage of particle-reinforced metal matrix composites, particularly in the context of functionally graded metal matrix composites. In this study, a two-dimensional nonlinear random microstructure-based finite element modeling approach implemented in ABAQUS/Explicit with a Python-generated script to analyze the deformation and damage mechanisms in AA 6061 - T 6 / Al 2 O 3 composites. The plastic deformation and ductile cracking of the matrix are captured using the Gurson–Tvergaard–Needleman model, whereas particle fracture is modelled using the Johnson–Holmquist II model. Matrix-particle interface decohesion is simulated using the surface-based cohesive zone method. The findings reveal that functionally graded metal matrix composites exhibit higher hardness values ( HRB ) than traditional metal matrix composites. The results highlight the importance of functionally graded metal matrix composites. Functionally graded metal matrix composites with a Gaussian distribution and a particle volume fraction of 10% achieve HRB values comparable to particle-reinforced metal matrix composites with a particle volume fraction of 20%, with only a 2% difference in HRB . Thus, HRB can be improved significantly by employing a low particle volume fraction and incorporating a Gaussian distribution across the material thickness. Furthermore, functionally graded metal matrix composites with a Gaussian distribution exhibit higher HRB values and better agreement with experimental distribution functions when compared to those with a power-law distribution.
doi_str_mv 10.1038/s41598-024-70247-3
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4d87189d99304d29b733eabdddb326ab</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4d87189d99304d29b733eabdddb326ab</doaj_id><sourcerecordid>3101392857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-3a2bdb08d5b345431da47539989437f29d67536ca4d55e3ee00572d20ab4f7bb3</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEolXpC7BAltiwCTi2E8dLVPEzUiU2sLau45uMR3E82I6g79KHxdMMBbHAC_9-99g6PlX1sqFvG8r7d0k0reprykQtSydr_qS6ZFS0NeOMPf1rflFdp3SgpbVMiUY9ry64YoJ1tL-s7ndLctM-J-KWHMgRYnbDjMS6dMSYXFgILJZY8DAh8TjsYXHJn3AyrsuQCwHzfEemCBZtITLMxEOO7icZgj-G5DIm8sPlPYlFKnji3RBDynEd8hqxNpBK4eiWAhKc0eOSiQ8W5xfVsxHmhNfn8ar69vHD15vP9e2XT7ub97f1wLsu1xyYsYb2tjVctII3FoRsuVK9ElyOTNmuLLsBhG1b5IjFCckso2DEKI3hV9Vu07UBDvoYnYd4pwM4_bAR4qTPvmhhe9n0yirFqbBMGck5grHWGs46OGm92bSOMXxfMWXtXRpwnmHBsCbNG9pIJTpJC_r6H_QQ1ljs3KjySX0rC8U26mRaijg-PrCh-hQFvUVBlxTohyhoXopenaVX49E-lvz--ALwDUjlaJkw_rn7P7K_AJPSwYA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101392857</pqid></control><display><type>article</type><title>Insights into particle dispersion and damage mechanisms in functionally graded metal matrix composites with random microstructure-based finite element model</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Naguib, M. E. ; Gad, S. I. ; Megahed, M. ; Agwa, M. A.</creator><creatorcontrib>Naguib, M. E. ; Gad, S. I. ; Megahed, M. ; Agwa, M. A.</creatorcontrib><description>This study investigates the impact of Al 2 O 3 particle volume fraction and distribution on the deformation and damage of particle-reinforced metal matrix composites, particularly in the context of functionally graded metal matrix composites. In this study, a two-dimensional nonlinear random microstructure-based finite element modeling approach implemented in ABAQUS/Explicit with a Python-generated script to analyze the deformation and damage mechanisms in AA 6061 - T 6 / Al 2 O 3 composites. The plastic deformation and ductile cracking of the matrix are captured using the Gurson–Tvergaard–Needleman model, whereas particle fracture is modelled using the Johnson–Holmquist II model. Matrix-particle interface decohesion is simulated using the surface-based cohesive zone method. The findings reveal that functionally graded metal matrix composites exhibit higher hardness values ( HRB ) than traditional metal matrix composites. The results highlight the importance of functionally graded metal matrix composites. Functionally graded metal matrix composites with a Gaussian distribution and a particle volume fraction of 10% achieve HRB values comparable to particle-reinforced metal matrix composites with a particle volume fraction of 20%, with only a 2% difference in HRB . Thus, HRB can be improved significantly by employing a low particle volume fraction and incorporating a Gaussian distribution across the material thickness. Furthermore, functionally graded metal matrix composites with a Gaussian distribution exhibit higher HRB values and better agreement with experimental distribution functions when compared to those with a power-law distribution.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-70247-3</identifier><identifier>PMID: 39242608</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/984 ; 639/166/988 ; 639/301/1023 ; 639/705/1042 ; 639/705/794 ; Aluminum oxide ; Damage behavior ; Dissolution ; Finite element method ; Functionally graded metal matrix composites ; Heat treating ; Humanities and Social Sciences ; Metals ; multidisciplinary ; Normal distribution ; Random microstructure-based model ; Science ; Science (multidisciplinary) ; Spherical indentation</subject><ispartof>Scientific reports, 2024-09, Vol.14 (1), p.20835-20, Article 20835</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c366t-3a2bdb08d5b345431da47539989437f29d67536ca4d55e3ee00572d20ab4f7bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3101392857/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3101392857?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39242608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naguib, M. E.</creatorcontrib><creatorcontrib>Gad, S. I.</creatorcontrib><creatorcontrib>Megahed, M.</creatorcontrib><creatorcontrib>Agwa, M. A.</creatorcontrib><title>Insights into particle dispersion and damage mechanisms in functionally graded metal matrix composites with random microstructure-based finite element model</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>This study investigates the impact of Al 2 O 3 particle volume fraction and distribution on the deformation and damage of particle-reinforced metal matrix composites, particularly in the context of functionally graded metal matrix composites. In this study, a two-dimensional nonlinear random microstructure-based finite element modeling approach implemented in ABAQUS/Explicit with a Python-generated script to analyze the deformation and damage mechanisms in AA 6061 - T 6 / Al 2 O 3 composites. The plastic deformation and ductile cracking of the matrix are captured using the Gurson–Tvergaard–Needleman model, whereas particle fracture is modelled using the Johnson–Holmquist II model. Matrix-particle interface decohesion is simulated using the surface-based cohesive zone method. The findings reveal that functionally graded metal matrix composites exhibit higher hardness values ( HRB ) than traditional metal matrix composites. The results highlight the importance of functionally graded metal matrix composites. Functionally graded metal matrix composites with a Gaussian distribution and a particle volume fraction of 10% achieve HRB values comparable to particle-reinforced metal matrix composites with a particle volume fraction of 20%, with only a 2% difference in HRB . Thus, HRB can be improved significantly by employing a low particle volume fraction and incorporating a Gaussian distribution across the material thickness. Furthermore, functionally graded metal matrix composites with a Gaussian distribution exhibit higher HRB values and better agreement with experimental distribution functions when compared to those with a power-law distribution.</description><subject>639/166/984</subject><subject>639/166/988</subject><subject>639/301/1023</subject><subject>639/705/1042</subject><subject>639/705/794</subject><subject>Aluminum oxide</subject><subject>Damage behavior</subject><subject>Dissolution</subject><subject>Finite element method</subject><subject>Functionally graded metal matrix composites</subject><subject>Heat treating</subject><subject>Humanities and Social Sciences</subject><subject>Metals</subject><subject>multidisciplinary</subject><subject>Normal distribution</subject><subject>Random microstructure-based model</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spherical indentation</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAUhSMEolXpC7BAltiwCTi2E8dLVPEzUiU2sLau45uMR3E82I6g79KHxdMMBbHAC_9-99g6PlX1sqFvG8r7d0k0reprykQtSydr_qS6ZFS0NeOMPf1rflFdp3SgpbVMiUY9ry64YoJ1tL-s7ndLctM-J-KWHMgRYnbDjMS6dMSYXFgILJZY8DAh8TjsYXHJn3AyrsuQCwHzfEemCBZtITLMxEOO7icZgj-G5DIm8sPlPYlFKnji3RBDynEd8hqxNpBK4eiWAhKc0eOSiQ8W5xfVsxHmhNfn8ar69vHD15vP9e2XT7ub97f1wLsu1xyYsYb2tjVctII3FoRsuVK9ElyOTNmuLLsBhG1b5IjFCckso2DEKI3hV9Vu07UBDvoYnYd4pwM4_bAR4qTPvmhhe9n0yirFqbBMGck5grHWGs46OGm92bSOMXxfMWXtXRpwnmHBsCbNG9pIJTpJC_r6H_QQ1ljs3KjySX0rC8U26mRaijg-PrCh-hQFvUVBlxTohyhoXopenaVX49E-lvz--ALwDUjlaJkw_rn7P7K_AJPSwYA</recordid><startdate>20240906</startdate><enddate>20240906</enddate><creator>Naguib, M. E.</creator><creator>Gad, S. I.</creator><creator>Megahed, M.</creator><creator>Agwa, M. A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20240906</creationdate><title>Insights into particle dispersion and damage mechanisms in functionally graded metal matrix composites with random microstructure-based finite element model</title><author>Naguib, M. E. ; Gad, S. I. ; Megahed, M. ; Agwa, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-3a2bdb08d5b345431da47539989437f29d67536ca4d55e3ee00572d20ab4f7bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/166/984</topic><topic>639/166/988</topic><topic>639/301/1023</topic><topic>639/705/1042</topic><topic>639/705/794</topic><topic>Aluminum oxide</topic><topic>Damage behavior</topic><topic>Dissolution</topic><topic>Finite element method</topic><topic>Functionally graded metal matrix composites</topic><topic>Heat treating</topic><topic>Humanities and Social Sciences</topic><topic>Metals</topic><topic>multidisciplinary</topic><topic>Normal distribution</topic><topic>Random microstructure-based model</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spherical indentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naguib, M. E.</creatorcontrib><creatorcontrib>Gad, S. I.</creatorcontrib><creatorcontrib>Megahed, M.</creatorcontrib><creatorcontrib>Agwa, M. A.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naguib, M. E.</au><au>Gad, S. I.</au><au>Megahed, M.</au><au>Agwa, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into particle dispersion and damage mechanisms in functionally graded metal matrix composites with random microstructure-based finite element model</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-09-06</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>20835</spage><epage>20</epage><pages>20835-20</pages><artnum>20835</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>This study investigates the impact of Al 2 O 3 particle volume fraction and distribution on the deformation and damage of particle-reinforced metal matrix composites, particularly in the context of functionally graded metal matrix composites. In this study, a two-dimensional nonlinear random microstructure-based finite element modeling approach implemented in ABAQUS/Explicit with a Python-generated script to analyze the deformation and damage mechanisms in AA 6061 - T 6 / Al 2 O 3 composites. The plastic deformation and ductile cracking of the matrix are captured using the Gurson–Tvergaard–Needleman model, whereas particle fracture is modelled using the Johnson–Holmquist II model. Matrix-particle interface decohesion is simulated using the surface-based cohesive zone method. The findings reveal that functionally graded metal matrix composites exhibit higher hardness values ( HRB ) than traditional metal matrix composites. The results highlight the importance of functionally graded metal matrix composites. Functionally graded metal matrix composites with a Gaussian distribution and a particle volume fraction of 10% achieve HRB values comparable to particle-reinforced metal matrix composites with a particle volume fraction of 20%, with only a 2% difference in HRB . Thus, HRB can be improved significantly by employing a low particle volume fraction and incorporating a Gaussian distribution across the material thickness. Furthermore, functionally graded metal matrix composites with a Gaussian distribution exhibit higher HRB values and better agreement with experimental distribution functions when compared to those with a power-law distribution.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39242608</pmid><doi>10.1038/s41598-024-70247-3</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2024-09, Vol.14 (1), p.20835-20, Article 20835
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4d87189d99304d29b733eabdddb326ab
source Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/166/984
639/166/988
639/301/1023
639/705/1042
639/705/794
Aluminum oxide
Damage behavior
Dissolution
Finite element method
Functionally graded metal matrix composites
Heat treating
Humanities and Social Sciences
Metals
multidisciplinary
Normal distribution
Random microstructure-based model
Science
Science (multidisciplinary)
Spherical indentation
title Insights into particle dispersion and damage mechanisms in functionally graded metal matrix composites with random microstructure-based finite element model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A06%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20particle%20dispersion%20and%20damage%20mechanisms%20in%20functionally%20graded%20metal%20matrix%20composites%20with%20random%20microstructure-based%20finite%20element%20model&rft.jtitle=Scientific%20reports&rft.au=Naguib,%20M.%20E.&rft.date=2024-09-06&rft.volume=14&rft.issue=1&rft.spage=20835&rft.epage=20&rft.pages=20835-20&rft.artnum=20835&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-70247-3&rft_dat=%3Cproquest_doaj_%3E3101392857%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-3a2bdb08d5b345431da47539989437f29d67536ca4d55e3ee00572d20ab4f7bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3101392857&rft_id=info:pmid/39242608&rfr_iscdi=true