Loading…
UMUDGA: A dataset for profiling algorithmically generated domain names in botnet detection
In computer security, botnets still represent a significant cyber threat. Concealing techniques such as the dynamic addressing and the domain generation algorithms (DGAs) require an improved and more effective detection process. To this extent, this data descriptor presents a collection of over 30 m...
Saved in:
Published in: | Data in brief 2020-06, Vol.30, p.105400-105400, Article 105400 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In computer security, botnets still represent a significant cyber threat. Concealing techniques such as the dynamic addressing and the domain generation algorithms (DGAs) require an improved and more effective detection process. To this extent, this data descriptor presents a collection of over 30 million manually-labeled algorithmically generated domain names decorated with a feature set ready-to-use for machine learning (ML) analysis. This proposed dataset has been co-submitted with the research article ”UMUDGA: a dataset for profiling DGA-based botnet” [1], and it aims to enable researchers to move forward the data collection, organization, and pre-processing phases, eventually enabling them to focus on the analysis and the production of ML-powered solutions for network intrusion detection. In this research, we selected 50 among the most notorious malware variants to be as exhaustive as possible. Inhere, each family is available both as a list of domains (generated by executing the malware DGAs in a controlled environment with fixed parameters) and as a collection of features (generated by extracting a combination of statistical and natural language processing metrics). |
---|---|
ISSN: | 2352-3409 2352-3409 |
DOI: | 10.1016/j.dib.2020.105400 |