Loading…
Genetic Dissection of Maize Embryonic Callus Regenerative Capacity Using Multi-Locus Genome-Wide Association Studies
The regenerative capacity of the embryonic callus, a complex quantitative trait, is one of the main limiting factors for maize transformation. This trait was decomposed into five traits, namely, green callus rate (GCR), callus differentiating rate (CDR), callus plantlet number (CPN), callus rooting...
Saved in:
Published in: | Frontiers in plant science 2018-04, Vol.9, p.561-561 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c525t-7109e81d0c8d462368e2bb29472b1fb503a84656f47917b8860abe68e3e1dca73 |
---|---|
cites | cdi_FETCH-LOGICAL-c525t-7109e81d0c8d462368e2bb29472b1fb503a84656f47917b8860abe68e3e1dca73 |
container_end_page | 561 |
container_issue | |
container_start_page | 561 |
container_title | Frontiers in plant science |
container_volume | 9 |
creator | Ma, Langlang Liu, Min Yan, Yuanyuan Qing, Chunyan Zhang, Xiaoling Zhang, Yanling Long, Yun Wang, Lei Pan, Lang Zou, Chaoying Li, Zhaoling Wang, Yanli Peng, Huanwei Pan, Guangtang Jiang, Zhou Shen, Yaou |
description | The regenerative capacity of the embryonic callus, a complex quantitative trait, is one of the main limiting factors for maize transformation. This trait was decomposed into five traits, namely, green callus rate (GCR), callus differentiating rate (CDR), callus plantlet number (CPN), callus rooting rate (CRR), and callus browning rate (CBR). To dissect the genetic foundation of maize transformation, in this study multi-locus genome-wide association studies (GWAS) for the five traits were performed in a population of 144 inbred lines genotyped with 43,427 SNPs. Using the phenotypic values in three environments and best linear unbiased prediction (BLUP) values, as a result, a total of 127, 56, 160, and 130 significant quantitative trait nucleotides (QTNs) were identified by mrMLM, FASTmrEMMA, ISIS EM-BLASSO, and pLARmEB, respectively. Of these QTNs, 63 QTNs were commonly detected, including 15 across multiple environments and 58 across multiple methods. Allele distribution analysis showed that the proportion of superior alleles for 36 QTNs was |
doi_str_mv | 10.3389/fpls.2018.00561 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4d8cc74813d94e26aa61a2efcf69b084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4d8cc74813d94e26aa61a2efcf69b084</doaj_id><sourcerecordid>2038701357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-7109e81d0c8d462368e2bb29472b1fb503a84656f47917b8860abe68e3e1dca73</originalsourceid><addsrcrecordid>eNpVkU1r3DAQhk1paUKSc2_Fx1680ffHpRC2SRrYEGgb2puQ5fFWwba2khzY_vpqd9OQ6DJi5p1nZnir6gNGC0qVPu83Q1oQhNUCIS7wm-oYC8EaJsivty_-R9VZSg-oPI6Q1vJ9dUS05JxpfVzla5gge1d_8SmByz5MdejrW-v_Qn05tnEbplJd2mGYU_0N1kUebfaPUHIb63ze1vfJT-v6dh6yb1bBFV2BhhGan76D-iKl4Lzdk7_nufOQTqt3vR0SnD3Fk-r-6vLH8muzuru-WV6sGscJz43ESIPCHXKqK4dQoYC0LdFMkhb3LUfUKia46JnUWLZKCWRbKCoKuHNW0pPq5sDtgn0wm-hHG7cmWG_2iRDXxsZy_ACGdco5yRSmnWZAhLUCWwK964VukWKF9fnA2sztCJ2DKUc7vIK-rkz-t1mHR8M1pVjiAvj0BIjhzwwpm9EnB8NgJwhzMgRRJRGmfLf3-UHqYkgpQv88BiOzs97srDc7683e-tLx8eV2z_r_RtN_yoKsdA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2038701357</pqid></control><display><type>article</type><title>Genetic Dissection of Maize Embryonic Callus Regenerative Capacity Using Multi-Locus Genome-Wide Association Studies</title><source>PubMed Central</source><creator>Ma, Langlang ; Liu, Min ; Yan, Yuanyuan ; Qing, Chunyan ; Zhang, Xiaoling ; Zhang, Yanling ; Long, Yun ; Wang, Lei ; Pan, Lang ; Zou, Chaoying ; Li, Zhaoling ; Wang, Yanli ; Peng, Huanwei ; Pan, Guangtang ; Jiang, Zhou ; Shen, Yaou</creator><creatorcontrib>Ma, Langlang ; Liu, Min ; Yan, Yuanyuan ; Qing, Chunyan ; Zhang, Xiaoling ; Zhang, Yanling ; Long, Yun ; Wang, Lei ; Pan, Lang ; Zou, Chaoying ; Li, Zhaoling ; Wang, Yanli ; Peng, Huanwei ; Pan, Guangtang ; Jiang, Zhou ; Shen, Yaou</creatorcontrib><description>The regenerative capacity of the embryonic callus, a complex quantitative trait, is one of the main limiting factors for maize transformation. This trait was decomposed into five traits, namely, green callus rate (GCR), callus differentiating rate (CDR), callus plantlet number (CPN), callus rooting rate (CRR), and callus browning rate (CBR). To dissect the genetic foundation of maize transformation, in this study multi-locus genome-wide association studies (GWAS) for the five traits were performed in a population of 144 inbred lines genotyped with 43,427 SNPs. Using the phenotypic values in three environments and best linear unbiased prediction (BLUP) values, as a result, a total of 127, 56, 160, and 130 significant quantitative trait nucleotides (QTNs) were identified by mrMLM, FASTmrEMMA, ISIS EM-BLASSO, and pLARmEB, respectively. Of these QTNs, 63 QTNs were commonly detected, including 15 across multiple environments and 58 across multiple methods. Allele distribution analysis showed that the proportion of superior alleles for 36 QTNs was <50% in 31 elite inbred lines. Meanwhile, these superior alleles had obviously additive effect on the regenerative capacity. This indicates that the regenerative capacity-related traits can be improved by proper integration of the superior alleles using marker-assisted selection. Moreover, a total of 40 candidate genes were found based on these common QTNs. Some annotated genes were previously reported to relate with auxin transport, cell fate, seed germination, or embryo development, especially, GRMZM2G108933 (
) was found to promote maize transgenic embryonic callus regeneration. These identified candidate genes will contribute to a further understanding of the genetic foundation of maize embryonic callus regeneration.</description><identifier>ISSN: 1664-462X</identifier><identifier>EISSN: 1664-462X</identifier><identifier>DOI: 10.3389/fpls.2018.00561</identifier><identifier>PMID: 29755499</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>candidate gene ; embryonic callus ; maize ; multi-locus GWAS ; Plant Science ; regenerative capacity</subject><ispartof>Frontiers in plant science, 2018-04, Vol.9, p.561-561</ispartof><rights>Copyright © 2018 Ma, Liu, Yan, Qing, Zhang, Zhang, Long, Wang, Pan, Zou, Li, Wang, Peng, Pan, Jiang and Shen. 2018 Ma, Liu, Yan, Qing, Zhang, Zhang, Long, Wang, Pan, Zou, Li, Wang, Peng, Pan, Jiang and Shen</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-7109e81d0c8d462368e2bb29472b1fb503a84656f47917b8860abe68e3e1dca73</citedby><cites>FETCH-LOGICAL-c525t-7109e81d0c8d462368e2bb29472b1fb503a84656f47917b8860abe68e3e1dca73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5933171/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5933171/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29755499$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Langlang</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Yan, Yuanyuan</creatorcontrib><creatorcontrib>Qing, Chunyan</creatorcontrib><creatorcontrib>Zhang, Xiaoling</creatorcontrib><creatorcontrib>Zhang, Yanling</creatorcontrib><creatorcontrib>Long, Yun</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Pan, Lang</creatorcontrib><creatorcontrib>Zou, Chaoying</creatorcontrib><creatorcontrib>Li, Zhaoling</creatorcontrib><creatorcontrib>Wang, Yanli</creatorcontrib><creatorcontrib>Peng, Huanwei</creatorcontrib><creatorcontrib>Pan, Guangtang</creatorcontrib><creatorcontrib>Jiang, Zhou</creatorcontrib><creatorcontrib>Shen, Yaou</creatorcontrib><title>Genetic Dissection of Maize Embryonic Callus Regenerative Capacity Using Multi-Locus Genome-Wide Association Studies</title><title>Frontiers in plant science</title><addtitle>Front Plant Sci</addtitle><description>The regenerative capacity of the embryonic callus, a complex quantitative trait, is one of the main limiting factors for maize transformation. This trait was decomposed into five traits, namely, green callus rate (GCR), callus differentiating rate (CDR), callus plantlet number (CPN), callus rooting rate (CRR), and callus browning rate (CBR). To dissect the genetic foundation of maize transformation, in this study multi-locus genome-wide association studies (GWAS) for the five traits were performed in a population of 144 inbred lines genotyped with 43,427 SNPs. Using the phenotypic values in three environments and best linear unbiased prediction (BLUP) values, as a result, a total of 127, 56, 160, and 130 significant quantitative trait nucleotides (QTNs) were identified by mrMLM, FASTmrEMMA, ISIS EM-BLASSO, and pLARmEB, respectively. Of these QTNs, 63 QTNs were commonly detected, including 15 across multiple environments and 58 across multiple methods. Allele distribution analysis showed that the proportion of superior alleles for 36 QTNs was <50% in 31 elite inbred lines. Meanwhile, these superior alleles had obviously additive effect on the regenerative capacity. This indicates that the regenerative capacity-related traits can be improved by proper integration of the superior alleles using marker-assisted selection. Moreover, a total of 40 candidate genes were found based on these common QTNs. Some annotated genes were previously reported to relate with auxin transport, cell fate, seed germination, or embryo development, especially, GRMZM2G108933 (
) was found to promote maize transgenic embryonic callus regeneration. These identified candidate genes will contribute to a further understanding of the genetic foundation of maize embryonic callus regeneration.</description><subject>candidate gene</subject><subject>embryonic callus</subject><subject>maize</subject><subject>multi-locus GWAS</subject><subject>Plant Science</subject><subject>regenerative capacity</subject><issn>1664-462X</issn><issn>1664-462X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1r3DAQhk1paUKSc2_Fx1680ffHpRC2SRrYEGgb2puQ5fFWwba2khzY_vpqd9OQ6DJi5p1nZnir6gNGC0qVPu83Q1oQhNUCIS7wm-oYC8EaJsivty_-R9VZSg-oPI6Q1vJ9dUS05JxpfVzla5gge1d_8SmByz5MdejrW-v_Qn05tnEbplJd2mGYU_0N1kUebfaPUHIb63ze1vfJT-v6dh6yb1bBFV2BhhGan76D-iKl4Lzdk7_nufOQTqt3vR0SnD3Fk-r-6vLH8muzuru-WV6sGscJz43ESIPCHXKqK4dQoYC0LdFMkhb3LUfUKia46JnUWLZKCWRbKCoKuHNW0pPq5sDtgn0wm-hHG7cmWG_2iRDXxsZy_ACGdco5yRSmnWZAhLUCWwK964VukWKF9fnA2sztCJ2DKUc7vIK-rkz-t1mHR8M1pVjiAvj0BIjhzwwpm9EnB8NgJwhzMgRRJRGmfLf3-UHqYkgpQv88BiOzs97srDc7683e-tLx8eV2z_r_RtN_yoKsdA</recordid><startdate>20180426</startdate><enddate>20180426</enddate><creator>Ma, Langlang</creator><creator>Liu, Min</creator><creator>Yan, Yuanyuan</creator><creator>Qing, Chunyan</creator><creator>Zhang, Xiaoling</creator><creator>Zhang, Yanling</creator><creator>Long, Yun</creator><creator>Wang, Lei</creator><creator>Pan, Lang</creator><creator>Zou, Chaoying</creator><creator>Li, Zhaoling</creator><creator>Wang, Yanli</creator><creator>Peng, Huanwei</creator><creator>Pan, Guangtang</creator><creator>Jiang, Zhou</creator><creator>Shen, Yaou</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180426</creationdate><title>Genetic Dissection of Maize Embryonic Callus Regenerative Capacity Using Multi-Locus Genome-Wide Association Studies</title><author>Ma, Langlang ; Liu, Min ; Yan, Yuanyuan ; Qing, Chunyan ; Zhang, Xiaoling ; Zhang, Yanling ; Long, Yun ; Wang, Lei ; Pan, Lang ; Zou, Chaoying ; Li, Zhaoling ; Wang, Yanli ; Peng, Huanwei ; Pan, Guangtang ; Jiang, Zhou ; Shen, Yaou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-7109e81d0c8d462368e2bb29472b1fb503a84656f47917b8860abe68e3e1dca73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>candidate gene</topic><topic>embryonic callus</topic><topic>maize</topic><topic>multi-locus GWAS</topic><topic>Plant Science</topic><topic>regenerative capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Langlang</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Yan, Yuanyuan</creatorcontrib><creatorcontrib>Qing, Chunyan</creatorcontrib><creatorcontrib>Zhang, Xiaoling</creatorcontrib><creatorcontrib>Zhang, Yanling</creatorcontrib><creatorcontrib>Long, Yun</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Pan, Lang</creatorcontrib><creatorcontrib>Zou, Chaoying</creatorcontrib><creatorcontrib>Li, Zhaoling</creatorcontrib><creatorcontrib>Wang, Yanli</creatorcontrib><creatorcontrib>Peng, Huanwei</creatorcontrib><creatorcontrib>Pan, Guangtang</creatorcontrib><creatorcontrib>Jiang, Zhou</creatorcontrib><creatorcontrib>Shen, Yaou</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Langlang</au><au>Liu, Min</au><au>Yan, Yuanyuan</au><au>Qing, Chunyan</au><au>Zhang, Xiaoling</au><au>Zhang, Yanling</au><au>Long, Yun</au><au>Wang, Lei</au><au>Pan, Lang</au><au>Zou, Chaoying</au><au>Li, Zhaoling</au><au>Wang, Yanli</au><au>Peng, Huanwei</au><au>Pan, Guangtang</au><au>Jiang, Zhou</au><au>Shen, Yaou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Dissection of Maize Embryonic Callus Regenerative Capacity Using Multi-Locus Genome-Wide Association Studies</atitle><jtitle>Frontiers in plant science</jtitle><addtitle>Front Plant Sci</addtitle><date>2018-04-26</date><risdate>2018</risdate><volume>9</volume><spage>561</spage><epage>561</epage><pages>561-561</pages><issn>1664-462X</issn><eissn>1664-462X</eissn><abstract>The regenerative capacity of the embryonic callus, a complex quantitative trait, is one of the main limiting factors for maize transformation. This trait was decomposed into five traits, namely, green callus rate (GCR), callus differentiating rate (CDR), callus plantlet number (CPN), callus rooting rate (CRR), and callus browning rate (CBR). To dissect the genetic foundation of maize transformation, in this study multi-locus genome-wide association studies (GWAS) for the five traits were performed in a population of 144 inbred lines genotyped with 43,427 SNPs. Using the phenotypic values in three environments and best linear unbiased prediction (BLUP) values, as a result, a total of 127, 56, 160, and 130 significant quantitative trait nucleotides (QTNs) were identified by mrMLM, FASTmrEMMA, ISIS EM-BLASSO, and pLARmEB, respectively. Of these QTNs, 63 QTNs were commonly detected, including 15 across multiple environments and 58 across multiple methods. Allele distribution analysis showed that the proportion of superior alleles for 36 QTNs was <50% in 31 elite inbred lines. Meanwhile, these superior alleles had obviously additive effect on the regenerative capacity. This indicates that the regenerative capacity-related traits can be improved by proper integration of the superior alleles using marker-assisted selection. Moreover, a total of 40 candidate genes were found based on these common QTNs. Some annotated genes were previously reported to relate with auxin transport, cell fate, seed germination, or embryo development, especially, GRMZM2G108933 (
) was found to promote maize transgenic embryonic callus regeneration. These identified candidate genes will contribute to a further understanding of the genetic foundation of maize embryonic callus regeneration.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>29755499</pmid><doi>10.3389/fpls.2018.00561</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-462X |
ispartof | Frontiers in plant science, 2018-04, Vol.9, p.561-561 |
issn | 1664-462X 1664-462X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4d8cc74813d94e26aa61a2efcf69b084 |
source | PubMed Central |
subjects | candidate gene embryonic callus maize multi-locus GWAS Plant Science regenerative capacity |
title | Genetic Dissection of Maize Embryonic Callus Regenerative Capacity Using Multi-Locus Genome-Wide Association Studies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Dissection%20of%20Maize%20Embryonic%20Callus%20Regenerative%20Capacity%20Using%20Multi-Locus%20Genome-Wide%20Association%20Studies&rft.jtitle=Frontiers%20in%20plant%20science&rft.au=Ma,%20Langlang&rft.date=2018-04-26&rft.volume=9&rft.spage=561&rft.epage=561&rft.pages=561-561&rft.issn=1664-462X&rft.eissn=1664-462X&rft_id=info:doi/10.3389/fpls.2018.00561&rft_dat=%3Cproquest_doaj_%3E2038701357%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c525t-7109e81d0c8d462368e2bb29472b1fb503a84656f47917b8860abe68e3e1dca73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2038701357&rft_id=info:pmid/29755499&rfr_iscdi=true |