Loading…

Influence of rare-earth metal on the zinc oxide nanostructures: application in the photocatalytic degradation of methylene blue and p-nitro phenol

Rare-earth cerium (Ce)-doped zinc oxide (ZnO) spherical nanoparticles were synthesized by using the co-precipitation method. The doped materials were characterized by means of the X-ray diffraction, Williamson-Hall Plot, and field emission scanning electron microscopy analyses. The prepared nanopart...

Full description

Saved in:
Bibliographic Details
Published in:Green processing and synthesis 2018-07, Vol.7 (4), p.360-371
Main Authors: Labhane, Prakash K., Sonawane, Gunvant H., Sonawane, Shirish H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rare-earth cerium (Ce)-doped zinc oxide (ZnO) spherical nanoparticles were synthesized by using the co-precipitation method. The doped materials were characterized by means of the X-ray diffraction, Williamson-Hall Plot, and field emission scanning electron microscopy analyses. The prepared nanoparticles exhibit a hexagonal wurtzite structure as observed from the XRD measurements. Energy dispersive X-ray spectroscopy data confirmed the purity of the prepared samples. The photocatalytic activity of the rare-earth Ce-doped ZnO spherical nanoparticles was investigated through the degradation of methylene blue (MB) and p-nitrophenol (PNP) solution under UV light radiation. Among the different amounts of dopant, 5 mole% Ce-doped ZnO nanoparticles showed the highest degradation with UV light radiation for both MB dye and PNP solution. The particle size, morphology, and separation of the photo-induced electron–hole pair are the main factors that influence photocatalytic activity. The probable mechanisms of photocatalytic degradation and mineralization of MB and PNP are also explained by liquid chromatography–mass spectrometry analysis.
ISSN:2191-9542
2191-9550
DOI:10.1515/gps-2017-0006