Loading…

Charge transport, information scrambling and quantum operator-coherence in a many-body system with U(1) symmetry

A bstract In this work, we derive an exact hydrodynamical description for the coupled, charge and operator dynamics, in a quantum many-body system with U(1) symmetry. Using an emergent symmetry in the complex Brownian SYK model with charge conservation, we map the operator dynamics in the model to t...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2023-05, Vol.2023 (5), p.37-33, Article 37
Main Authors: Agarwal, Lakshya, Sahu, Subhayan, Xu, Shenglong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A bstract In this work, we derive an exact hydrodynamical description for the coupled, charge and operator dynamics, in a quantum many-body system with U(1) symmetry. Using an emergent symmetry in the complex Brownian SYK model with charge conservation, we map the operator dynamics in the model to the imaginary-time dynamics of an SU(4) spin-chain. We utilize the emergent SU(4) description to demonstrate that the U(1) symmetry causes quantum-coherence to persist even after disorder-averaging, in sharp contrast to models without symmetries. In line with this property, we write down a ‘restricted’ Fokker-Planck equation for the out-of-time ordered correlator (OTOC) in the large- N limit, which permits a classical probability description strictly in the incoherent sector of the global operator-space. We then exploit this feature to describe the OTOC in terms of a Fisher-Kolmogorov-Petrovsky-Piskun (FKPP)-equation which couples the operator with the charge and is valid at all time-scales and for arbitrary charge-density profiles. The coupled equations obtained belong to a class of models also used to describe the population dynamics of bacteria embedded in a diffusive media. We simulate them to explore operator-dynamics in a background of non-uniform charge configuration, which reveals that the charge transport can strongly affect dynamics of operators, including those that have no overlap with the charge.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP05(2023)037