Loading…

p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease

Parkinson's disease (PD) is characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), accompanied by accumulation of α-synuclein, chronic neuroinflammation and autophagy dysfunction. Previous studies suggested that misfolded α-synuclein induces the infl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroinflammation 2021-12, Vol.18 (1), p.295-295, Article 295
Main Authors: Chen, Jialong, Mao, Kanmin, Yu, Honglin, Wen, Yue, She, Hua, Zhang, He, Liu, Linhua, Li, Mingque, Li, Wenjun, Zou, Fei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c563t-92733f30d50eceeacb1a38de967697b34615148698cf5c51de01a3eb932d13fc3
cites cdi_FETCH-LOGICAL-c563t-92733f30d50eceeacb1a38de967697b34615148698cf5c51de01a3eb932d13fc3
container_end_page 295
container_issue 1
container_start_page 295
container_title Journal of neuroinflammation
container_volume 18
creator Chen, Jialong
Mao, Kanmin
Yu, Honglin
Wen, Yue
She, Hua
Zhang, He
Liu, Linhua
Li, Mingque
Li, Wenjun
Zou, Fei
description Parkinson's disease (PD) is characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), accompanied by accumulation of α-synuclein, chronic neuroinflammation and autophagy dysfunction. Previous studies suggested that misfolded α-synuclein induces the inflammatory response and autophagy dysfunction in microglial cells. The NLRP3 inflammasome signaling pathway plays a crucial role in the neuroinflammatory process in the central nervous system. However, the relationship between autophagy deficiency and NLRP3 activation induced by α-synuclein accumulation is not well understood. Through immunoblotting, immunocytochemistry, immunofluorescence, flow cytometry, ELISA and behavioral tests, we investigated the role of p38-TFEB-NLRP3 signaling pathways on neuroinflammation in the α-synuclein A53T PD models. Our results showed that increased protein levels of NLRP3, ASC, and caspase-1 in the α-synuclein A53T PD models. P38 is activated by overexpression of α-synuclein A53T mutant, which inhibited the master transcriptional activator of autophagy TFEB. And we found that NLRP3 was degraded by chaperone-mediated autophagy (CMA) in microglial cells. Furthermore, p38-TFEB pathways inhibited CMA-mediated NLRP3 degradation in Parkinson's disease. Inhibition of p38 had a protective effect on Parkinson's disease model via suppressing the activation of NLRP3 inflammasome pathway. Moreover, both p38 inhibitor SB203580 and NLRP3 inhibitor MCC950 not only prevented neurodegeneration in vivo, but also alleviated movement impairment in α-synuclein A53T-tg mice model of Parkinson's disease. Our research reveals p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease, which could be a potential therapeutic strategy for PD. p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease. In this model, p38 activates NLRP3 inflammasome via inhibiting TFEB in microglia. TFEB signaling negatively regulates NLRP3 inflammasome through increasing LAMP2A expression, which binds to NLRP3 and promotes its degradation via chaperone-mediated autophagy (CMA). NLRP3-mediated microglial activation promotes the death of dopaminergic neurons.
doi_str_mv 10.1186/s12974-021-02349-y
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4da7287141b0461680db684780590f04</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A693612070</galeid><doaj_id>oai_doaj_org_article_4da7287141b0461680db684780590f04</doaj_id><sourcerecordid>A693612070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-92733f30d50eceeacb1a38de967697b34615148698cf5c51de01a3eb932d13fc3</originalsourceid><addsrcrecordid>eNptkl9vFCEUxSdGY2v1C_hgSHzQl6n8G2Z4MVk3rTZZtTH1mTDAzFJnYQtsm_323nZr7RpDCORyzo9cOFX1muBjQjrxIRMqW15jSmAyLuvtk-qQtJzWFEv-9NH-oHqR8yXGjDaCPq8OQMwwjMPqZs26-uL05BNa67K80duM1imuYnFo5U2K4-Q10qb4a118DKgsU9yMS-TD0ve--DCi-ddZvXLW6-Is-rb4cc6QdWPSdufwAZ3r9MuHHMO7jKzPTmf3sno26Cm7V_frUfXz9ORi_qVefP98Np8tatMIVmpJW8YGhm2DnXFOm55o1lknRStk2zMuSEN4J2RnhsY0xDoMAtdLRi1hg2FH1dmOa6O-VOvkVzptVdRe3RViGpVOxZvJKW51S7uWcNJj4IoO2150vO1wI_GAObA-7ljrTQ8NGxdK0tMedP8k-KUa47XqRCeoZAB4fw9I8WrjclErn42bJh1c3GRFBaGslZg3IH37j_QyblKApwIVJRh-ntK_qlFDAz4MEe41t1A1E5IBDrcYVMf_UcGwDv44Bjd4qO8Z6M4AAcg5ueGhR4LVbfTULnoKoqfuoqe2YHrz-HUeLH-yxn4DpwXSfQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621029722</pqid></control><display><type>article</type><title>p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Chen, Jialong ; Mao, Kanmin ; Yu, Honglin ; Wen, Yue ; She, Hua ; Zhang, He ; Liu, Linhua ; Li, Mingque ; Li, Wenjun ; Zou, Fei</creator><creatorcontrib>Chen, Jialong ; Mao, Kanmin ; Yu, Honglin ; Wen, Yue ; She, Hua ; Zhang, He ; Liu, Linhua ; Li, Mingque ; Li, Wenjun ; Zou, Fei</creatorcontrib><description>Parkinson's disease (PD) is characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), accompanied by accumulation of α-synuclein, chronic neuroinflammation and autophagy dysfunction. Previous studies suggested that misfolded α-synuclein induces the inflammatory response and autophagy dysfunction in microglial cells. The NLRP3 inflammasome signaling pathway plays a crucial role in the neuroinflammatory process in the central nervous system. However, the relationship between autophagy deficiency and NLRP3 activation induced by α-synuclein accumulation is not well understood. Through immunoblotting, immunocytochemistry, immunofluorescence, flow cytometry, ELISA and behavioral tests, we investigated the role of p38-TFEB-NLRP3 signaling pathways on neuroinflammation in the α-synuclein A53T PD models. Our results showed that increased protein levels of NLRP3, ASC, and caspase-1 in the α-synuclein A53T PD models. P38 is activated by overexpression of α-synuclein A53T mutant, which inhibited the master transcriptional activator of autophagy TFEB. And we found that NLRP3 was degraded by chaperone-mediated autophagy (CMA) in microglial cells. Furthermore, p38-TFEB pathways inhibited CMA-mediated NLRP3 degradation in Parkinson's disease. Inhibition of p38 had a protective effect on Parkinson's disease model via suppressing the activation of NLRP3 inflammasome pathway. Moreover, both p38 inhibitor SB203580 and NLRP3 inhibitor MCC950 not only prevented neurodegeneration in vivo, but also alleviated movement impairment in α-synuclein A53T-tg mice model of Parkinson's disease. Our research reveals p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease, which could be a potential therapeutic strategy for PD. p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease. In this model, p38 activates NLRP3 inflammasome via inhibiting TFEB in microglia. TFEB signaling negatively regulates NLRP3 inflammasome through increasing LAMP2A expression, which binds to NLRP3 and promotes its degradation via chaperone-mediated autophagy (CMA). NLRP3-mediated microglial activation promotes the death of dopaminergic neurons.</description><identifier>ISSN: 1742-2094</identifier><identifier>EISSN: 1742-2094</identifier><identifier>DOI: 10.1186/s12974-021-02349-y</identifier><identifier>PMID: 34930303</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Alzheimer's disease ; Apoptosis ; Autophagy ; Autophagy (Cytology) ; Caspase-1 ; Cell cycle ; Central nervous system ; Chaperone-mediated autophagy ; Cytokines ; Degradation ; Development and progression ; Dopamine receptors ; Enzyme-linked immunosorbent assay ; Flow cytometry ; Health aspects ; Immunoblotting ; Immunocytochemistry ; Immunofluorescence ; Inflammasomes ; Inflammation ; Infrared imaging systems ; Kinases ; Methods ; Microglia ; Microglial cells ; Movement disorders ; Neurodegeneration ; Neurodegenerative diseases ; NLRP3 ; p38 ; Parkinson's disease ; Pathogenesis ; Phosphorylation ; Plasmids ; Prevention ; Proteins ; Risk factors ; Signal transduction ; Substantia nigra ; Synuclein ; TFEB ; Transcription ; Tumor necrosis factor-TNF</subject><ispartof>Journal of neuroinflammation, 2021-12, Vol.18 (1), p.295-295, Article 295</ispartof><rights>2021. The Author(s).</rights><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-92733f30d50eceeacb1a38de967697b34615148698cf5c51de01a3eb932d13fc3</citedby><cites>FETCH-LOGICAL-c563t-92733f30d50eceeacb1a38de967697b34615148698cf5c51de01a3eb932d13fc3</cites><orcidid>0000-0003-1152-5016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8686293/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2621029722?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34930303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jialong</creatorcontrib><creatorcontrib>Mao, Kanmin</creatorcontrib><creatorcontrib>Yu, Honglin</creatorcontrib><creatorcontrib>Wen, Yue</creatorcontrib><creatorcontrib>She, Hua</creatorcontrib><creatorcontrib>Zhang, He</creatorcontrib><creatorcontrib>Liu, Linhua</creatorcontrib><creatorcontrib>Li, Mingque</creatorcontrib><creatorcontrib>Li, Wenjun</creatorcontrib><creatorcontrib>Zou, Fei</creatorcontrib><title>p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease</title><title>Journal of neuroinflammation</title><addtitle>J Neuroinflammation</addtitle><description>Parkinson's disease (PD) is characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), accompanied by accumulation of α-synuclein, chronic neuroinflammation and autophagy dysfunction. Previous studies suggested that misfolded α-synuclein induces the inflammatory response and autophagy dysfunction in microglial cells. The NLRP3 inflammasome signaling pathway plays a crucial role in the neuroinflammatory process in the central nervous system. However, the relationship between autophagy deficiency and NLRP3 activation induced by α-synuclein accumulation is not well understood. Through immunoblotting, immunocytochemistry, immunofluorescence, flow cytometry, ELISA and behavioral tests, we investigated the role of p38-TFEB-NLRP3 signaling pathways on neuroinflammation in the α-synuclein A53T PD models. Our results showed that increased protein levels of NLRP3, ASC, and caspase-1 in the α-synuclein A53T PD models. P38 is activated by overexpression of α-synuclein A53T mutant, which inhibited the master transcriptional activator of autophagy TFEB. And we found that NLRP3 was degraded by chaperone-mediated autophagy (CMA) in microglial cells. Furthermore, p38-TFEB pathways inhibited CMA-mediated NLRP3 degradation in Parkinson's disease. Inhibition of p38 had a protective effect on Parkinson's disease model via suppressing the activation of NLRP3 inflammasome pathway. Moreover, both p38 inhibitor SB203580 and NLRP3 inhibitor MCC950 not only prevented neurodegeneration in vivo, but also alleviated movement impairment in α-synuclein A53T-tg mice model of Parkinson's disease. Our research reveals p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease, which could be a potential therapeutic strategy for PD. p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease. In this model, p38 activates NLRP3 inflammasome via inhibiting TFEB in microglia. TFEB signaling negatively regulates NLRP3 inflammasome through increasing LAMP2A expression, which binds to NLRP3 and promotes its degradation via chaperone-mediated autophagy (CMA). NLRP3-mediated microglial activation promotes the death of dopaminergic neurons.</description><subject>Alzheimer's disease</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Autophagy (Cytology)</subject><subject>Caspase-1</subject><subject>Cell cycle</subject><subject>Central nervous system</subject><subject>Chaperone-mediated autophagy</subject><subject>Cytokines</subject><subject>Degradation</subject><subject>Development and progression</subject><subject>Dopamine receptors</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Flow cytometry</subject><subject>Health aspects</subject><subject>Immunoblotting</subject><subject>Immunocytochemistry</subject><subject>Immunofluorescence</subject><subject>Inflammasomes</subject><subject>Inflammation</subject><subject>Infrared imaging systems</subject><subject>Kinases</subject><subject>Methods</subject><subject>Microglia</subject><subject>Microglial cells</subject><subject>Movement disorders</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>NLRP3</subject><subject>p38</subject><subject>Parkinson's disease</subject><subject>Pathogenesis</subject><subject>Phosphorylation</subject><subject>Plasmids</subject><subject>Prevention</subject><subject>Proteins</subject><subject>Risk factors</subject><subject>Signal transduction</subject><subject>Substantia nigra</subject><subject>Synuclein</subject><subject>TFEB</subject><subject>Transcription</subject><subject>Tumor necrosis factor-TNF</subject><issn>1742-2094</issn><issn>1742-2094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl9vFCEUxSdGY2v1C_hgSHzQl6n8G2Z4MVk3rTZZtTH1mTDAzFJnYQtsm_323nZr7RpDCORyzo9cOFX1muBjQjrxIRMqW15jSmAyLuvtk-qQtJzWFEv-9NH-oHqR8yXGjDaCPq8OQMwwjMPqZs26-uL05BNa67K80duM1imuYnFo5U2K4-Q10qb4a118DKgsU9yMS-TD0ve--DCi-ddZvXLW6-Is-rb4cc6QdWPSdufwAZ3r9MuHHMO7jKzPTmf3sno26Cm7V_frUfXz9ORi_qVefP98Np8tatMIVmpJW8YGhm2DnXFOm55o1lknRStk2zMuSEN4J2RnhsY0xDoMAtdLRi1hg2FH1dmOa6O-VOvkVzptVdRe3RViGpVOxZvJKW51S7uWcNJj4IoO2150vO1wI_GAObA-7ljrTQ8NGxdK0tMedP8k-KUa47XqRCeoZAB4fw9I8WrjclErn42bJh1c3GRFBaGslZg3IH37j_QyblKApwIVJRh-ntK_qlFDAz4MEe41t1A1E5IBDrcYVMf_UcGwDv44Bjd4qO8Z6M4AAcg5ueGhR4LVbfTULnoKoqfuoqe2YHrz-HUeLH-yxn4DpwXSfQ</recordid><startdate>20211220</startdate><enddate>20211220</enddate><creator>Chen, Jialong</creator><creator>Mao, Kanmin</creator><creator>Yu, Honglin</creator><creator>Wen, Yue</creator><creator>She, Hua</creator><creator>Zhang, He</creator><creator>Liu, Linhua</creator><creator>Li, Mingque</creator><creator>Li, Wenjun</creator><creator>Zou, Fei</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1152-5016</orcidid></search><sort><creationdate>20211220</creationdate><title>p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease</title><author>Chen, Jialong ; Mao, Kanmin ; Yu, Honglin ; Wen, Yue ; She, Hua ; Zhang, He ; Liu, Linhua ; Li, Mingque ; Li, Wenjun ; Zou, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-92733f30d50eceeacb1a38de967697b34615148698cf5c51de01a3eb932d13fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alzheimer's disease</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Autophagy (Cytology)</topic><topic>Caspase-1</topic><topic>Cell cycle</topic><topic>Central nervous system</topic><topic>Chaperone-mediated autophagy</topic><topic>Cytokines</topic><topic>Degradation</topic><topic>Development and progression</topic><topic>Dopamine receptors</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Flow cytometry</topic><topic>Health aspects</topic><topic>Immunoblotting</topic><topic>Immunocytochemistry</topic><topic>Immunofluorescence</topic><topic>Inflammasomes</topic><topic>Inflammation</topic><topic>Infrared imaging systems</topic><topic>Kinases</topic><topic>Methods</topic><topic>Microglia</topic><topic>Microglial cells</topic><topic>Movement disorders</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>NLRP3</topic><topic>p38</topic><topic>Parkinson's disease</topic><topic>Pathogenesis</topic><topic>Phosphorylation</topic><topic>Plasmids</topic><topic>Prevention</topic><topic>Proteins</topic><topic>Risk factors</topic><topic>Signal transduction</topic><topic>Substantia nigra</topic><topic>Synuclein</topic><topic>TFEB</topic><topic>Transcription</topic><topic>Tumor necrosis factor-TNF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jialong</creatorcontrib><creatorcontrib>Mao, Kanmin</creatorcontrib><creatorcontrib>Yu, Honglin</creatorcontrib><creatorcontrib>Wen, Yue</creatorcontrib><creatorcontrib>She, Hua</creatorcontrib><creatorcontrib>Zhang, He</creatorcontrib><creatorcontrib>Liu, Linhua</creatorcontrib><creatorcontrib>Li, Mingque</creatorcontrib><creatorcontrib>Li, Wenjun</creatorcontrib><creatorcontrib>Zou, Fei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of neuroinflammation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jialong</au><au>Mao, Kanmin</au><au>Yu, Honglin</au><au>Wen, Yue</au><au>She, Hua</au><au>Zhang, He</au><au>Liu, Linhua</au><au>Li, Mingque</au><au>Li, Wenjun</au><au>Zou, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease</atitle><jtitle>Journal of neuroinflammation</jtitle><addtitle>J Neuroinflammation</addtitle><date>2021-12-20</date><risdate>2021</risdate><volume>18</volume><issue>1</issue><spage>295</spage><epage>295</epage><pages>295-295</pages><artnum>295</artnum><issn>1742-2094</issn><eissn>1742-2094</eissn><abstract>Parkinson's disease (PD) is characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), accompanied by accumulation of α-synuclein, chronic neuroinflammation and autophagy dysfunction. Previous studies suggested that misfolded α-synuclein induces the inflammatory response and autophagy dysfunction in microglial cells. The NLRP3 inflammasome signaling pathway plays a crucial role in the neuroinflammatory process in the central nervous system. However, the relationship between autophagy deficiency and NLRP3 activation induced by α-synuclein accumulation is not well understood. Through immunoblotting, immunocytochemistry, immunofluorescence, flow cytometry, ELISA and behavioral tests, we investigated the role of p38-TFEB-NLRP3 signaling pathways on neuroinflammation in the α-synuclein A53T PD models. Our results showed that increased protein levels of NLRP3, ASC, and caspase-1 in the α-synuclein A53T PD models. P38 is activated by overexpression of α-synuclein A53T mutant, which inhibited the master transcriptional activator of autophagy TFEB. And we found that NLRP3 was degraded by chaperone-mediated autophagy (CMA) in microglial cells. Furthermore, p38-TFEB pathways inhibited CMA-mediated NLRP3 degradation in Parkinson's disease. Inhibition of p38 had a protective effect on Parkinson's disease model via suppressing the activation of NLRP3 inflammasome pathway. Moreover, both p38 inhibitor SB203580 and NLRP3 inhibitor MCC950 not only prevented neurodegeneration in vivo, but also alleviated movement impairment in α-synuclein A53T-tg mice model of Parkinson's disease. Our research reveals p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease, which could be a potential therapeutic strategy for PD. p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease. In this model, p38 activates NLRP3 inflammasome via inhibiting TFEB in microglia. TFEB signaling negatively regulates NLRP3 inflammasome through increasing LAMP2A expression, which binds to NLRP3 and promotes its degradation via chaperone-mediated autophagy (CMA). NLRP3-mediated microglial activation promotes the death of dopaminergic neurons.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>34930303</pmid><doi>10.1186/s12974-021-02349-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1152-5016</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-2094
ispartof Journal of neuroinflammation, 2021-12, Vol.18 (1), p.295-295, Article 295
issn 1742-2094
1742-2094
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4da7287141b0461680db684780590f04
source Publicly Available Content Database; PubMed Central
subjects Alzheimer's disease
Apoptosis
Autophagy
Autophagy (Cytology)
Caspase-1
Cell cycle
Central nervous system
Chaperone-mediated autophagy
Cytokines
Degradation
Development and progression
Dopamine receptors
Enzyme-linked immunosorbent assay
Flow cytometry
Health aspects
Immunoblotting
Immunocytochemistry
Immunofluorescence
Inflammasomes
Inflammation
Infrared imaging systems
Kinases
Methods
Microglia
Microglial cells
Movement disorders
Neurodegeneration
Neurodegenerative diseases
NLRP3
p38
Parkinson's disease
Pathogenesis
Phosphorylation
Plasmids
Prevention
Proteins
Risk factors
Signal transduction
Substantia nigra
Synuclein
TFEB
Transcription
Tumor necrosis factor-TNF
title p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A21%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=p38-TFEB%20pathways%20promote%20microglia%20activation%20through%20inhibiting%20CMA-mediated%20NLRP3%20degradation%20in%20Parkinson's%20disease&rft.jtitle=Journal%20of%20neuroinflammation&rft.au=Chen,%20Jialong&rft.date=2021-12-20&rft.volume=18&rft.issue=1&rft.spage=295&rft.epage=295&rft.pages=295-295&rft.artnum=295&rft.issn=1742-2094&rft.eissn=1742-2094&rft_id=info:doi/10.1186/s12974-021-02349-y&rft_dat=%3Cgale_doaj_%3EA693612070%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c563t-92733f30d50eceeacb1a38de967697b34615148698cf5c51de01a3eb932d13fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621029722&rft_id=info:pmid/34930303&rft_galeid=A693612070&rfr_iscdi=true