Loading…

A Kalman Filter with Intermittent Observations and Reconstruction of Data Losses

This paper deals with the problem of joint state and unknown input estimation for stochastic discrete-time linear systems subject to intermittent unknown inputs on measurements. A Kalman filter approach is proposed for state prediction and intermittent unknown input reconstruction. The filter design...

Full description

Saved in:
Bibliographic Details
Published in:International journal of applied mathematics and computer science 2022-06, Vol.32 (2), p.241-253
Main Authors: Rhouma, Taouba, Keller, Jean-Yves, Abdelkrim, Mohamed Naceur
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 253
container_issue 2
container_start_page 241
container_title International journal of applied mathematics and computer science
container_volume 32
creator Rhouma, Taouba
Keller, Jean-Yves
Abdelkrim, Mohamed Naceur
description This paper deals with the problem of joint state and unknown input estimation for stochastic discrete-time linear systems subject to intermittent unknown inputs on measurements. A Kalman filter approach is proposed for state prediction and intermittent unknown input reconstruction. The filter design is based on the minimization of the trace of the state estimation error covariance matrix under the constraint that the state prediction error is decoupled from active unknown inputs corrupting measurements at the current time. When the system is not strongly detectable, a sufficient stochastic stability condition on the mathematical expectation of the random state prediction errors covariance matrix is established in the case where the arrival binary sequences of unknown inputs follow independent random Bernoulli processes. When the intermittent unknown inputs on measurements represent intermittent observations, an illustrative example shows that the proposed filter corresponds to a Kalman filter with intermittent observations having the ability to generate a minimum variance unbiased prediction of measurement losses.
doi_str_mv 10.34768/amcs-2022-0018
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4db4908ac29e4f778588d0b6802487e2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4db4908ac29e4f778588d0b6802487e2</doaj_id><sourcerecordid>2682882116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-e533032379c22d718bd190e9a793d391de4e6a0643d8d57b14488fd10a5c8cec3</originalsourceid><addsrcrecordid>eNp1UU1v1DAQtRBILIUzV0ucQ-2xNx4fOFSFwoqVihBI3KyJPSlZ7SbF9rbqvyfpIjhxmqfRe28-nhCvtXprrGvxnA6xNKAAGqU0PhErUGgatB6eipVurW7QtT-eixel7JQCr5xZiS8X8jPtDzTKq2FfOcv7of6Um3GGh6FWHqu87grnO6rDNBZJY5JfOc6w5mNcenLq5XuqJLdTKVxeimc97Qu_-lPPxPerD98uPzXb64-by4ttEw3a2vDaGGXAOB8BktPYJe0Ve3LeJON1YsstqdaahGntOm0tYp-0onXEyNGcic3JN020C7d5OFB-CBMN4bEx5ZtAuQ5xz8GmznqFFMGz7Z3DNWJSXYsKLDqG2evNyes2T7-OXGrYTcc8zusHaBEQQet2Zp2fWDHPl2bu_07VKjxGEJYIwhJBWCKYFe9Ointafpv4Jh8fZvDP_n9KALDa_AZGm4zT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682882116</pqid></control><display><type>article</type><title>A Kalman Filter with Intermittent Observations and Reconstruction of Data Losses</title><source>Freely Accessible Journals</source><source>Publicly Available Content Database</source><creator>Rhouma, Taouba ; Keller, Jean-Yves ; Abdelkrim, Mohamed Naceur</creator><creatorcontrib>Rhouma, Taouba ; Keller, Jean-Yves ; Abdelkrim, Mohamed Naceur</creatorcontrib><description>This paper deals with the problem of joint state and unknown input estimation for stochastic discrete-time linear systems subject to intermittent unknown inputs on measurements. A Kalman filter approach is proposed for state prediction and intermittent unknown input reconstruction. The filter design is based on the minimization of the trace of the state estimation error covariance matrix under the constraint that the state prediction error is decoupled from active unknown inputs corrupting measurements at the current time. When the system is not strongly detectable, a sufficient stochastic stability condition on the mathematical expectation of the random state prediction errors covariance matrix is established in the case where the arrival binary sequences of unknown inputs follow independent random Bernoulli processes. When the intermittent unknown inputs on measurements represent intermittent observations, an illustrative example shows that the proposed filter corresponds to a Kalman filter with intermittent observations having the ability to generate a minimum variance unbiased prediction of measurement losses.</description><identifier>ISSN: 1641-876X</identifier><identifier>EISSN: 2083-8492</identifier><identifier>DOI: 10.34768/amcs-2022-0018</identifier><language>eng</language><publisher>Zielona Góra: Sciendo</publisher><subject>Communication channels ; Covariance matrix ; Data integrity ; Data loss ; Data transmission ; Discrete time systems ; Fault diagnosis ; Filter design (mathematics) ; intermittent observation ; intermittent unknown inputs ; Kalman filter ; Kalman filters ; linear system ; Linear systems ; Markov analysis ; Mathematical analysis ; Reconstruction ; Sensors ; Sequences ; State estimation</subject><ispartof>International journal of applied mathematics and computer science, 2022-06, Vol.32 (2), p.241-253</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2682882116?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25740,27911,27912,36999,44577</link.rule.ids></links><search><creatorcontrib>Rhouma, Taouba</creatorcontrib><creatorcontrib>Keller, Jean-Yves</creatorcontrib><creatorcontrib>Abdelkrim, Mohamed Naceur</creatorcontrib><title>A Kalman Filter with Intermittent Observations and Reconstruction of Data Losses</title><title>International journal of applied mathematics and computer science</title><description>This paper deals with the problem of joint state and unknown input estimation for stochastic discrete-time linear systems subject to intermittent unknown inputs on measurements. A Kalman filter approach is proposed for state prediction and intermittent unknown input reconstruction. The filter design is based on the minimization of the trace of the state estimation error covariance matrix under the constraint that the state prediction error is decoupled from active unknown inputs corrupting measurements at the current time. When the system is not strongly detectable, a sufficient stochastic stability condition on the mathematical expectation of the random state prediction errors covariance matrix is established in the case where the arrival binary sequences of unknown inputs follow independent random Bernoulli processes. When the intermittent unknown inputs on measurements represent intermittent observations, an illustrative example shows that the proposed filter corresponds to a Kalman filter with intermittent observations having the ability to generate a minimum variance unbiased prediction of measurement losses.</description><subject>Communication channels</subject><subject>Covariance matrix</subject><subject>Data integrity</subject><subject>Data loss</subject><subject>Data transmission</subject><subject>Discrete time systems</subject><subject>Fault diagnosis</subject><subject>Filter design (mathematics)</subject><subject>intermittent observation</subject><subject>intermittent unknown inputs</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>linear system</subject><subject>Linear systems</subject><subject>Markov analysis</subject><subject>Mathematical analysis</subject><subject>Reconstruction</subject><subject>Sensors</subject><subject>Sequences</subject><subject>State estimation</subject><issn>1641-876X</issn><issn>2083-8492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UU1v1DAQtRBILIUzV0ucQ-2xNx4fOFSFwoqVihBI3KyJPSlZ7SbF9rbqvyfpIjhxmqfRe28-nhCvtXprrGvxnA6xNKAAGqU0PhErUGgatB6eipVurW7QtT-eixel7JQCr5xZiS8X8jPtDzTKq2FfOcv7of6Um3GGh6FWHqu87grnO6rDNBZJY5JfOc6w5mNcenLq5XuqJLdTKVxeimc97Qu_-lPPxPerD98uPzXb64-by4ttEw3a2vDaGGXAOB8BktPYJe0Ve3LeJON1YsstqdaahGntOm0tYp-0onXEyNGcic3JN020C7d5OFB-CBMN4bEx5ZtAuQ5xz8GmznqFFMGz7Z3DNWJSXYsKLDqG2evNyes2T7-OXGrYTcc8zusHaBEQQet2Zp2fWDHPl2bu_07VKjxGEJYIwhJBWCKYFe9Ointafpv4Jh8fZvDP_n9KALDa_AZGm4zT</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Rhouma, Taouba</creator><creator>Keller, Jean-Yves</creator><creator>Abdelkrim, Mohamed Naceur</creator><general>Sciendo</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>DOA</scope></search><sort><creationdate>20220601</creationdate><title>A Kalman Filter with Intermittent Observations and Reconstruction of Data Losses</title><author>Rhouma, Taouba ; Keller, Jean-Yves ; Abdelkrim, Mohamed Naceur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-e533032379c22d718bd190e9a793d391de4e6a0643d8d57b14488fd10a5c8cec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Communication channels</topic><topic>Covariance matrix</topic><topic>Data integrity</topic><topic>Data loss</topic><topic>Data transmission</topic><topic>Discrete time systems</topic><topic>Fault diagnosis</topic><topic>Filter design (mathematics)</topic><topic>intermittent observation</topic><topic>intermittent unknown inputs</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>linear system</topic><topic>Linear systems</topic><topic>Markov analysis</topic><topic>Mathematical analysis</topic><topic>Reconstruction</topic><topic>Sensors</topic><topic>Sequences</topic><topic>State estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rhouma, Taouba</creatorcontrib><creatorcontrib>Keller, Jean-Yves</creatorcontrib><creatorcontrib>Abdelkrim, Mohamed Naceur</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of applied mathematics and computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rhouma, Taouba</au><au>Keller, Jean-Yves</au><au>Abdelkrim, Mohamed Naceur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Kalman Filter with Intermittent Observations and Reconstruction of Data Losses</atitle><jtitle>International journal of applied mathematics and computer science</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>32</volume><issue>2</issue><spage>241</spage><epage>253</epage><pages>241-253</pages><issn>1641-876X</issn><eissn>2083-8492</eissn><abstract>This paper deals with the problem of joint state and unknown input estimation for stochastic discrete-time linear systems subject to intermittent unknown inputs on measurements. A Kalman filter approach is proposed for state prediction and intermittent unknown input reconstruction. The filter design is based on the minimization of the trace of the state estimation error covariance matrix under the constraint that the state prediction error is decoupled from active unknown inputs corrupting measurements at the current time. When the system is not strongly detectable, a sufficient stochastic stability condition on the mathematical expectation of the random state prediction errors covariance matrix is established in the case where the arrival binary sequences of unknown inputs follow independent random Bernoulli processes. When the intermittent unknown inputs on measurements represent intermittent observations, an illustrative example shows that the proposed filter corresponds to a Kalman filter with intermittent observations having the ability to generate a minimum variance unbiased prediction of measurement losses.</abstract><cop>Zielona Góra</cop><pub>Sciendo</pub><doi>10.34768/amcs-2022-0018</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1641-876X
ispartof International journal of applied mathematics and computer science, 2022-06, Vol.32 (2), p.241-253
issn 1641-876X
2083-8492
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4db4908ac29e4f778588d0b6802487e2
source Freely Accessible Journals; Publicly Available Content Database
subjects Communication channels
Covariance matrix
Data integrity
Data loss
Data transmission
Discrete time systems
Fault diagnosis
Filter design (mathematics)
intermittent observation
intermittent unknown inputs
Kalman filter
Kalman filters
linear system
Linear systems
Markov analysis
Mathematical analysis
Reconstruction
Sensors
Sequences
State estimation
title A Kalman Filter with Intermittent Observations and Reconstruction of Data Losses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Kalman%20Filter%20with%20Intermittent%20Observations%20and%20Reconstruction%20of%20Data%20Losses&rft.jtitle=International%20journal%20of%20applied%20mathematics%20and%20computer%20science&rft.au=Rhouma,%20Taouba&rft.date=2022-06-01&rft.volume=32&rft.issue=2&rft.spage=241&rft.epage=253&rft.pages=241-253&rft.issn=1641-876X&rft.eissn=2083-8492&rft_id=info:doi/10.34768/amcs-2022-0018&rft_dat=%3Cproquest_doaj_%3E2682882116%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-e533032379c22d718bd190e9a793d391de4e6a0643d8d57b14488fd10a5c8cec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2682882116&rft_id=info:pmid/&rfr_iscdi=true