Loading…
A Kalman Filter with Intermittent Observations and Reconstruction of Data Losses
This paper deals with the problem of joint state and unknown input estimation for stochastic discrete-time linear systems subject to intermittent unknown inputs on measurements. A Kalman filter approach is proposed for state prediction and intermittent unknown input reconstruction. The filter design...
Saved in:
Published in: | International journal of applied mathematics and computer science 2022-06, Vol.32 (2), p.241-253 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 253 |
container_issue | 2 |
container_start_page | 241 |
container_title | International journal of applied mathematics and computer science |
container_volume | 32 |
creator | Rhouma, Taouba Keller, Jean-Yves Abdelkrim, Mohamed Naceur |
description | This paper deals with the problem of joint state and unknown input estimation for stochastic discrete-time linear systems subject to intermittent unknown inputs on measurements. A Kalman filter approach is proposed for state prediction and intermittent unknown input reconstruction. The filter design is based on the minimization of the trace of the state estimation error covariance matrix under the constraint that the state prediction error is decoupled from active unknown inputs corrupting measurements at the current time. When the system is not strongly detectable, a sufficient stochastic stability condition on the mathematical expectation of the random state prediction errors covariance matrix is established in the case where the arrival binary sequences of unknown inputs follow independent random Bernoulli processes. When the intermittent unknown inputs on measurements represent intermittent observations, an illustrative example shows that the proposed filter corresponds to a Kalman filter with intermittent observations having the ability to generate a minimum variance unbiased prediction of measurement losses. |
doi_str_mv | 10.34768/amcs-2022-0018 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4db4908ac29e4f778588d0b6802487e2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4db4908ac29e4f778588d0b6802487e2</doaj_id><sourcerecordid>2682882116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-e533032379c22d718bd190e9a793d391de4e6a0643d8d57b14488fd10a5c8cec3</originalsourceid><addsrcrecordid>eNp1UU1v1DAQtRBILIUzV0ucQ-2xNx4fOFSFwoqVihBI3KyJPSlZ7SbF9rbqvyfpIjhxmqfRe28-nhCvtXprrGvxnA6xNKAAGqU0PhErUGgatB6eipVurW7QtT-eixel7JQCr5xZiS8X8jPtDzTKq2FfOcv7of6Um3GGh6FWHqu87grnO6rDNBZJY5JfOc6w5mNcenLq5XuqJLdTKVxeimc97Qu_-lPPxPerD98uPzXb64-by4ttEw3a2vDaGGXAOB8BktPYJe0Ve3LeJON1YsstqdaahGntOm0tYp-0onXEyNGcic3JN020C7d5OFB-CBMN4bEx5ZtAuQ5xz8GmznqFFMGz7Z3DNWJSXYsKLDqG2evNyes2T7-OXGrYTcc8zusHaBEQQet2Zp2fWDHPl2bu_07VKjxGEJYIwhJBWCKYFe9Ointafpv4Jh8fZvDP_n9KALDa_AZGm4zT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682882116</pqid></control><display><type>article</type><title>A Kalman Filter with Intermittent Observations and Reconstruction of Data Losses</title><source>Freely Accessible Journals</source><source>Publicly Available Content Database</source><creator>Rhouma, Taouba ; Keller, Jean-Yves ; Abdelkrim, Mohamed Naceur</creator><creatorcontrib>Rhouma, Taouba ; Keller, Jean-Yves ; Abdelkrim, Mohamed Naceur</creatorcontrib><description>This paper deals with the problem of joint state and unknown input estimation for stochastic discrete-time linear systems subject to intermittent unknown inputs on measurements. A Kalman filter approach is proposed for state prediction and intermittent unknown input reconstruction. The filter design is based on the minimization of the trace of the state estimation error covariance matrix under the constraint that the state prediction error is decoupled from active unknown inputs corrupting measurements at the current time. When the system is not strongly detectable, a sufficient stochastic stability condition on the mathematical expectation of the random state prediction errors covariance matrix is established in the case where the arrival binary sequences of unknown inputs follow independent random Bernoulli processes. When the intermittent unknown inputs on measurements represent intermittent observations, an illustrative example shows that the proposed filter corresponds to a Kalman filter with intermittent observations having the ability to generate a minimum variance unbiased prediction of measurement losses.</description><identifier>ISSN: 1641-876X</identifier><identifier>EISSN: 2083-8492</identifier><identifier>DOI: 10.34768/amcs-2022-0018</identifier><language>eng</language><publisher>Zielona Góra: Sciendo</publisher><subject>Communication channels ; Covariance matrix ; Data integrity ; Data loss ; Data transmission ; Discrete time systems ; Fault diagnosis ; Filter design (mathematics) ; intermittent observation ; intermittent unknown inputs ; Kalman filter ; Kalman filters ; linear system ; Linear systems ; Markov analysis ; Mathematical analysis ; Reconstruction ; Sensors ; Sequences ; State estimation</subject><ispartof>International journal of applied mathematics and computer science, 2022-06, Vol.32 (2), p.241-253</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2682882116?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25740,27911,27912,36999,44577</link.rule.ids></links><search><creatorcontrib>Rhouma, Taouba</creatorcontrib><creatorcontrib>Keller, Jean-Yves</creatorcontrib><creatorcontrib>Abdelkrim, Mohamed Naceur</creatorcontrib><title>A Kalman Filter with Intermittent Observations and Reconstruction of Data Losses</title><title>International journal of applied mathematics and computer science</title><description>This paper deals with the problem of joint state and unknown input estimation for stochastic discrete-time linear systems subject to intermittent unknown inputs on measurements. A Kalman filter approach is proposed for state prediction and intermittent unknown input reconstruction. The filter design is based on the minimization of the trace of the state estimation error covariance matrix under the constraint that the state prediction error is decoupled from active unknown inputs corrupting measurements at the current time. When the system is not strongly detectable, a sufficient stochastic stability condition on the mathematical expectation of the random state prediction errors covariance matrix is established in the case where the arrival binary sequences of unknown inputs follow independent random Bernoulli processes. When the intermittent unknown inputs on measurements represent intermittent observations, an illustrative example shows that the proposed filter corresponds to a Kalman filter with intermittent observations having the ability to generate a minimum variance unbiased prediction of measurement losses.</description><subject>Communication channels</subject><subject>Covariance matrix</subject><subject>Data integrity</subject><subject>Data loss</subject><subject>Data transmission</subject><subject>Discrete time systems</subject><subject>Fault diagnosis</subject><subject>Filter design (mathematics)</subject><subject>intermittent observation</subject><subject>intermittent unknown inputs</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>linear system</subject><subject>Linear systems</subject><subject>Markov analysis</subject><subject>Mathematical analysis</subject><subject>Reconstruction</subject><subject>Sensors</subject><subject>Sequences</subject><subject>State estimation</subject><issn>1641-876X</issn><issn>2083-8492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UU1v1DAQtRBILIUzV0ucQ-2xNx4fOFSFwoqVihBI3KyJPSlZ7SbF9rbqvyfpIjhxmqfRe28-nhCvtXprrGvxnA6xNKAAGqU0PhErUGgatB6eipVurW7QtT-eixel7JQCr5xZiS8X8jPtDzTKq2FfOcv7of6Um3GGh6FWHqu87grnO6rDNBZJY5JfOc6w5mNcenLq5XuqJLdTKVxeimc97Qu_-lPPxPerD98uPzXb64-by4ttEw3a2vDaGGXAOB8BktPYJe0Ve3LeJON1YsstqdaahGntOm0tYp-0onXEyNGcic3JN020C7d5OFB-CBMN4bEx5ZtAuQ5xz8GmznqFFMGz7Z3DNWJSXYsKLDqG2evNyes2T7-OXGrYTcc8zusHaBEQQet2Zp2fWDHPl2bu_07VKjxGEJYIwhJBWCKYFe9Ointafpv4Jh8fZvDP_n9KALDa_AZGm4zT</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Rhouma, Taouba</creator><creator>Keller, Jean-Yves</creator><creator>Abdelkrim, Mohamed Naceur</creator><general>Sciendo</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>DOA</scope></search><sort><creationdate>20220601</creationdate><title>A Kalman Filter with Intermittent Observations and Reconstruction of Data Losses</title><author>Rhouma, Taouba ; Keller, Jean-Yves ; Abdelkrim, Mohamed Naceur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-e533032379c22d718bd190e9a793d391de4e6a0643d8d57b14488fd10a5c8cec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Communication channels</topic><topic>Covariance matrix</topic><topic>Data integrity</topic><topic>Data loss</topic><topic>Data transmission</topic><topic>Discrete time systems</topic><topic>Fault diagnosis</topic><topic>Filter design (mathematics)</topic><topic>intermittent observation</topic><topic>intermittent unknown inputs</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>linear system</topic><topic>Linear systems</topic><topic>Markov analysis</topic><topic>Mathematical analysis</topic><topic>Reconstruction</topic><topic>Sensors</topic><topic>Sequences</topic><topic>State estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rhouma, Taouba</creatorcontrib><creatorcontrib>Keller, Jean-Yves</creatorcontrib><creatorcontrib>Abdelkrim, Mohamed Naceur</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of applied mathematics and computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rhouma, Taouba</au><au>Keller, Jean-Yves</au><au>Abdelkrim, Mohamed Naceur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Kalman Filter with Intermittent Observations and Reconstruction of Data Losses</atitle><jtitle>International journal of applied mathematics and computer science</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>32</volume><issue>2</issue><spage>241</spage><epage>253</epage><pages>241-253</pages><issn>1641-876X</issn><eissn>2083-8492</eissn><abstract>This paper deals with the problem of joint state and unknown input estimation for stochastic discrete-time linear systems subject to intermittent unknown inputs on measurements. A Kalman filter approach is proposed for state prediction and intermittent unknown input reconstruction. The filter design is based on the minimization of the trace of the state estimation error covariance matrix under the constraint that the state prediction error is decoupled from active unknown inputs corrupting measurements at the current time. When the system is not strongly detectable, a sufficient stochastic stability condition on the mathematical expectation of the random state prediction errors covariance matrix is established in the case where the arrival binary sequences of unknown inputs follow independent random Bernoulli processes. When the intermittent unknown inputs on measurements represent intermittent observations, an illustrative example shows that the proposed filter corresponds to a Kalman filter with intermittent observations having the ability to generate a minimum variance unbiased prediction of measurement losses.</abstract><cop>Zielona Góra</cop><pub>Sciendo</pub><doi>10.34768/amcs-2022-0018</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1641-876X |
ispartof | International journal of applied mathematics and computer science, 2022-06, Vol.32 (2), p.241-253 |
issn | 1641-876X 2083-8492 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4db4908ac29e4f778588d0b6802487e2 |
source | Freely Accessible Journals; Publicly Available Content Database |
subjects | Communication channels Covariance matrix Data integrity Data loss Data transmission Discrete time systems Fault diagnosis Filter design (mathematics) intermittent observation intermittent unknown inputs Kalman filter Kalman filters linear system Linear systems Markov analysis Mathematical analysis Reconstruction Sensors Sequences State estimation |
title | A Kalman Filter with Intermittent Observations and Reconstruction of Data Losses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Kalman%20Filter%20with%20Intermittent%20Observations%20and%20Reconstruction%20of%20Data%20Losses&rft.jtitle=International%20journal%20of%20applied%20mathematics%20and%20computer%20science&rft.au=Rhouma,%20Taouba&rft.date=2022-06-01&rft.volume=32&rft.issue=2&rft.spage=241&rft.epage=253&rft.pages=241-253&rft.issn=1641-876X&rft.eissn=2083-8492&rft_id=info:doi/10.34768/amcs-2022-0018&rft_dat=%3Cproquest_doaj_%3E2682882116%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-e533032379c22d718bd190e9a793d391de4e6a0643d8d57b14488fd10a5c8cec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2682882116&rft_id=info:pmid/&rfr_iscdi=true |