Loading…

Dynamics of mTORC1 activation in response to amino acids

Amino acids are essential activators of mTORC1 via a complex containing RAG GTPases, RAGULATOR and the vacuolar ATPase. Sensing of amino acids causes translocation of mTORC1 to lysosomes, an obligate step for activation. To examine the spatial and temporal dynamics of this translocation, we used liv...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2016-10, Vol.5
Main Authors: Manifava, Maria, Smith, Matthew, Rotondo, Sergio, Walker, Simon, Niewczas, Izabella, Zoncu, Roberto, Clark, Jonathan, Ktistakis, Nicholas T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c684t-d2d01d42c16046c8875927bcb6ac5477be70eeefb4c4b8f34b20cebd9d53e1213
cites cdi_FETCH-LOGICAL-c684t-d2d01d42c16046c8875927bcb6ac5477be70eeefb4c4b8f34b20cebd9d53e1213
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 5
creator Manifava, Maria
Smith, Matthew
Rotondo, Sergio
Walker, Simon
Niewczas, Izabella
Zoncu, Roberto
Clark, Jonathan
Ktistakis, Nicholas T
description Amino acids are essential activators of mTORC1 via a complex containing RAG GTPases, RAGULATOR and the vacuolar ATPase. Sensing of amino acids causes translocation of mTORC1 to lysosomes, an obligate step for activation. To examine the spatial and temporal dynamics of this translocation, we used live imaging of the mTORC1 component RAPTOR and a cell permeant fluorescent analogue of di-leucine methyl ester. Translocation to lysosomes is a transient event, occurring within 2 min of aa addition and peaking within 5 min. It is temporally coupled with fluorescent leucine appearance in lysosomes and is sustained in comparison to aa stimulation. Sestrin2 and the vacuolar ATPase are negative and positive regulators of mTORC1 activity in our experimental system. Of note, phosphorylation of canonical mTORC1 targets is delayed compared to lysosomal translocation suggesting a dynamic and transient passage of mTORC1 from the lysosomal surface before targetting its substrates elsewhere.
doi_str_mv 10.7554/elife.19960
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4dc6536b39b6477aad81350250f078cf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A466219971</galeid><doaj_id>oai_doaj_org_article_4dc6536b39b6477aad81350250f078cf</doaj_id><sourcerecordid>A466219971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c684t-d2d01d42c16046c8875927bcb6ac5477be70eeefb4c4b8f34b20cebd9d53e1213</originalsourceid><addsrcrecordid>eNptkt9rFDEQxxdRbKl98l0WfLHInfmd7ItQzqoHB4VawbeQTSZnjr3k3OwW-98316u1KyaQhMlnvpOZTFW9xmguOWcfoAse5rhpBHpWHRPE0Qwp9uP5k_NRdZrzBpUhmVK4eVkdESkJR4oeV-rTbTTbYHOdfL29vrxa4NrYIdyYIaRYh1j3kHcpZqiHVBcyltUGl19VL7zpMpw-7CfV988X14uvs9Xll-XifDWzQrFh5ohD2DFisUBMWKUkb4hsbSuM5UzKFiQCAN8yy1rlKWsJstC6xnEKmGB6Ui0Pui6Zjd71YWv6W51M0PeG1K-16YdgO9DMWcGpaGnTiiJtjFOYclQy9Ugq64vWx4PWbmy34CzEoTfdRHR6E8NPvU43miPeYLZ_zLsHgT79GiEPehuyha4zEdKYNVaUU6loQwr69h90k8Y-llJp3HBKMSaE_6XWpiQQok8lrt2L6nMmBCkfK_dh5_-hynRQvi5F8KHYJw5nE4fCDPB7WJsxZ738djVl3x9Y26ece_CP9cBI73tMw6r0mL7vsUK_eVrCR_ZPR9E7OffJDg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953311225</pqid></control><display><type>article</type><title>Dynamics of mTORC1 activation in response to amino acids</title><source>PubMed Central Free</source><source>Publicly Available Content (ProQuest)</source><creator>Manifava, Maria ; Smith, Matthew ; Rotondo, Sergio ; Walker, Simon ; Niewczas, Izabella ; Zoncu, Roberto ; Clark, Jonathan ; Ktistakis, Nicholas T</creator><creatorcontrib>Manifava, Maria ; Smith, Matthew ; Rotondo, Sergio ; Walker, Simon ; Niewczas, Izabella ; Zoncu, Roberto ; Clark, Jonathan ; Ktistakis, Nicholas T</creatorcontrib><description>Amino acids are essential activators of mTORC1 via a complex containing RAG GTPases, RAGULATOR and the vacuolar ATPase. Sensing of amino acids causes translocation of mTORC1 to lysosomes, an obligate step for activation. To examine the spatial and temporal dynamics of this translocation, we used live imaging of the mTORC1 component RAPTOR and a cell permeant fluorescent analogue of di-leucine methyl ester. Translocation to lysosomes is a transient event, occurring within 2 min of aa addition and peaking within 5 min. It is temporally coupled with fluorescent leucine appearance in lysosomes and is sustained in comparison to aa stimulation. Sestrin2 and the vacuolar ATPase are negative and positive regulators of mTORC1 activity in our experimental system. Of note, phosphorylation of canonical mTORC1 targets is delayed compared to lysosomal translocation suggesting a dynamic and transient passage of mTORC1 from the lysosomal surface before targetting its substrates elsewhere.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/elife.19960</identifier><identifier>PMID: 27725083</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>Adenosine triphosphatase ; Amino acids ; Amino Acids - metabolism ; Autophagy ; Biochemistry ; Cell Biology ; HEK293 Cells ; Humans ; Intravital Microscopy ; Kinases ; Leucine ; Localization ; Lysosomes ; Lysosomes - metabolism ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; mtor ; Nuclear Proteins - metabolism ; Nutrient interactions ; Phosphorylation ; Properties ; Protein research ; Protein synthesis ; Protein Transport ; Proteins ; Regulatory-Associated Protein of mTOR - analysis ; Sensors ; signaling ; Spatio-Temporal Analysis ; Translocations (Genetics) ; Vacuolar Proton-Translocating ATPases - metabolism</subject><ispartof>eLife, 2016-10, Vol.5</ispartof><rights>COPYRIGHT 2016 eLife Science Publications, Ltd.</rights><rights>2016, Manifava et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016, Manifava et al 2016 Manifava et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c684t-d2d01d42c16046c8875927bcb6ac5477be70eeefb4c4b8f34b20cebd9d53e1213</citedby><cites>FETCH-LOGICAL-c684t-d2d01d42c16046c8875927bcb6ac5477be70eeefb4c4b8f34b20cebd9d53e1213</cites><orcidid>0000-0001-9185-4922 ; 0000-0001-9397-2914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1953311225/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1953311225?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27725083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manifava, Maria</creatorcontrib><creatorcontrib>Smith, Matthew</creatorcontrib><creatorcontrib>Rotondo, Sergio</creatorcontrib><creatorcontrib>Walker, Simon</creatorcontrib><creatorcontrib>Niewczas, Izabella</creatorcontrib><creatorcontrib>Zoncu, Roberto</creatorcontrib><creatorcontrib>Clark, Jonathan</creatorcontrib><creatorcontrib>Ktistakis, Nicholas T</creatorcontrib><title>Dynamics of mTORC1 activation in response to amino acids</title><title>eLife</title><addtitle>Elife</addtitle><description>Amino acids are essential activators of mTORC1 via a complex containing RAG GTPases, RAGULATOR and the vacuolar ATPase. Sensing of amino acids causes translocation of mTORC1 to lysosomes, an obligate step for activation. To examine the spatial and temporal dynamics of this translocation, we used live imaging of the mTORC1 component RAPTOR and a cell permeant fluorescent analogue of di-leucine methyl ester. Translocation to lysosomes is a transient event, occurring within 2 min of aa addition and peaking within 5 min. It is temporally coupled with fluorescent leucine appearance in lysosomes and is sustained in comparison to aa stimulation. Sestrin2 and the vacuolar ATPase are negative and positive regulators of mTORC1 activity in our experimental system. Of note, phosphorylation of canonical mTORC1 targets is delayed compared to lysosomal translocation suggesting a dynamic and transient passage of mTORC1 from the lysosomal surface before targetting its substrates elsewhere.</description><subject>Adenosine triphosphatase</subject><subject>Amino acids</subject><subject>Amino Acids - metabolism</subject><subject>Autophagy</subject><subject>Biochemistry</subject><subject>Cell Biology</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Intravital Microscopy</subject><subject>Kinases</subject><subject>Leucine</subject><subject>Localization</subject><subject>Lysosomes</subject><subject>Lysosomes - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>mtor</subject><subject>Nuclear Proteins - metabolism</subject><subject>Nutrient interactions</subject><subject>Phosphorylation</subject><subject>Properties</subject><subject>Protein research</subject><subject>Protein synthesis</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Regulatory-Associated Protein of mTOR - analysis</subject><subject>Sensors</subject><subject>signaling</subject><subject>Spatio-Temporal Analysis</subject><subject>Translocations (Genetics)</subject><subject>Vacuolar Proton-Translocating ATPases - metabolism</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt9rFDEQxxdRbKl98l0WfLHInfmd7ItQzqoHB4VawbeQTSZnjr3k3OwW-98316u1KyaQhMlnvpOZTFW9xmguOWcfoAse5rhpBHpWHRPE0Qwp9uP5k_NRdZrzBpUhmVK4eVkdESkJR4oeV-rTbTTbYHOdfL29vrxa4NrYIdyYIaRYh1j3kHcpZqiHVBcyltUGl19VL7zpMpw-7CfV988X14uvs9Xll-XifDWzQrFh5ohD2DFisUBMWKUkb4hsbSuM5UzKFiQCAN8yy1rlKWsJstC6xnEKmGB6Ui0Pui6Zjd71YWv6W51M0PeG1K-16YdgO9DMWcGpaGnTiiJtjFOYclQy9Ugq64vWx4PWbmy34CzEoTfdRHR6E8NPvU43miPeYLZ_zLsHgT79GiEPehuyha4zEdKYNVaUU6loQwr69h90k8Y-llJp3HBKMSaE_6XWpiQQok8lrt2L6nMmBCkfK_dh5_-hynRQvi5F8KHYJw5nE4fCDPB7WJsxZ738djVl3x9Y26ece_CP9cBI73tMw6r0mL7vsUK_eVrCR_ZPR9E7OffJDg</recordid><startdate>20161011</startdate><enddate>20161011</enddate><creator>Manifava, Maria</creator><creator>Smith, Matthew</creator><creator>Rotondo, Sergio</creator><creator>Walker, Simon</creator><creator>Niewczas, Izabella</creator><creator>Zoncu, Roberto</creator><creator>Clark, Jonathan</creator><creator>Ktistakis, Nicholas T</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9185-4922</orcidid><orcidid>https://orcid.org/0000-0001-9397-2914</orcidid></search><sort><creationdate>20161011</creationdate><title>Dynamics of mTORC1 activation in response to amino acids</title><author>Manifava, Maria ; Smith, Matthew ; Rotondo, Sergio ; Walker, Simon ; Niewczas, Izabella ; Zoncu, Roberto ; Clark, Jonathan ; Ktistakis, Nicholas T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c684t-d2d01d42c16046c8875927bcb6ac5477be70eeefb4c4b8f34b20cebd9d53e1213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine triphosphatase</topic><topic>Amino acids</topic><topic>Amino Acids - metabolism</topic><topic>Autophagy</topic><topic>Biochemistry</topic><topic>Cell Biology</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Intravital Microscopy</topic><topic>Kinases</topic><topic>Leucine</topic><topic>Localization</topic><topic>Lysosomes</topic><topic>Lysosomes - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>mtor</topic><topic>Nuclear Proteins - metabolism</topic><topic>Nutrient interactions</topic><topic>Phosphorylation</topic><topic>Properties</topic><topic>Protein research</topic><topic>Protein synthesis</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Regulatory-Associated Protein of mTOR - analysis</topic><topic>Sensors</topic><topic>signaling</topic><topic>Spatio-Temporal Analysis</topic><topic>Translocations (Genetics)</topic><topic>Vacuolar Proton-Translocating ATPases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manifava, Maria</creatorcontrib><creatorcontrib>Smith, Matthew</creatorcontrib><creatorcontrib>Rotondo, Sergio</creatorcontrib><creatorcontrib>Walker, Simon</creatorcontrib><creatorcontrib>Niewczas, Izabella</creatorcontrib><creatorcontrib>Zoncu, Roberto</creatorcontrib><creatorcontrib>Clark, Jonathan</creatorcontrib><creatorcontrib>Ktistakis, Nicholas T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manifava, Maria</au><au>Smith, Matthew</au><au>Rotondo, Sergio</au><au>Walker, Simon</au><au>Niewczas, Izabella</au><au>Zoncu, Roberto</au><au>Clark, Jonathan</au><au>Ktistakis, Nicholas T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of mTORC1 activation in response to amino acids</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2016-10-11</date><risdate>2016</risdate><volume>5</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Amino acids are essential activators of mTORC1 via a complex containing RAG GTPases, RAGULATOR and the vacuolar ATPase. Sensing of amino acids causes translocation of mTORC1 to lysosomes, an obligate step for activation. To examine the spatial and temporal dynamics of this translocation, we used live imaging of the mTORC1 component RAPTOR and a cell permeant fluorescent analogue of di-leucine methyl ester. Translocation to lysosomes is a transient event, occurring within 2 min of aa addition and peaking within 5 min. It is temporally coupled with fluorescent leucine appearance in lysosomes and is sustained in comparison to aa stimulation. Sestrin2 and the vacuolar ATPase are negative and positive regulators of mTORC1 activity in our experimental system. Of note, phosphorylation of canonical mTORC1 targets is delayed compared to lysosomal translocation suggesting a dynamic and transient passage of mTORC1 from the lysosomal surface before targetting its substrates elsewhere.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>27725083</pmid><doi>10.7554/elife.19960</doi><orcidid>https://orcid.org/0000-0001-9185-4922</orcidid><orcidid>https://orcid.org/0000-0001-9397-2914</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2016-10, Vol.5
issn 2050-084X
2050-084X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4dc6536b39b6477aad81350250f078cf
source PubMed Central Free; Publicly Available Content (ProQuest)
subjects Adenosine triphosphatase
Amino acids
Amino Acids - metabolism
Autophagy
Biochemistry
Cell Biology
HEK293 Cells
Humans
Intravital Microscopy
Kinases
Leucine
Localization
Lysosomes
Lysosomes - metabolism
Mechanistic Target of Rapamycin Complex 1 - metabolism
mtor
Nuclear Proteins - metabolism
Nutrient interactions
Phosphorylation
Properties
Protein research
Protein synthesis
Protein Transport
Proteins
Regulatory-Associated Protein of mTOR - analysis
Sensors
signaling
Spatio-Temporal Analysis
Translocations (Genetics)
Vacuolar Proton-Translocating ATPases - metabolism
title Dynamics of mTORC1 activation in response to amino acids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A27%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20mTORC1%20activation%20in%20response%20to%20amino%20acids&rft.jtitle=eLife&rft.au=Manifava,%20Maria&rft.date=2016-10-11&rft.volume=5&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/elife.19960&rft_dat=%3Cgale_doaj_%3EA466219971%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c684t-d2d01d42c16046c8875927bcb6ac5477be70eeefb4c4b8f34b20cebd9d53e1213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1953311225&rft_id=info:pmid/27725083&rft_galeid=A466219971&rfr_iscdi=true