Loading…

Earthquake Magnitude Estimation Using a Total Noise Enhanced Optimization Model

In this paper, a heterodyne laser interferometer, which is used as a sensor for high-precision displacement measurement, is introduced to measure ground vibration and seismic waves as a seismometer. The seismic wave is measured precisely through the displacement variation obtained by the heterodyne...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2019-03, Vol.19 (6), p.1454
Main Authors: Lee, Kyunghyun, Oh, Jinhwan, Lee, Hyukwoo, You, Kwanho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a heterodyne laser interferometer, which is used as a sensor for high-precision displacement measurement, is introduced to measure ground vibration and seismic waves as a seismometer. The seismic wave is measured precisely through the displacement variation obtained by the heterodyne laser interferometer. The earthquake magnitude is estimated using only the P-wave magnitudes for the first 3 s through the total noise enhanced optimization (TNEO) model. We use data from southern California to investigate the relationship between peak acceleration amplitude ( P d ) and the earthquake magnitude ( M g ). For precise prediction of the earthquake magnitude using only the P d value, the TNEO model derives the relation equation between P d and the magnitude, considering the noise present in each measured seismic data. The optimal solution is obtained from the TNEO model based objective function. We proved the performance of the proposed method through simulation and experimental results.
ISSN:1424-8220
1424-8220
DOI:10.3390/s19061454