Loading…

Integrating Clinics, Laboratory, and Imaging for the Diagnosis of Common Variable Immunodeficiency-Related Granulomatous-Lymphocytic Interstitial Lung Disease

Granulomatous-lymphocytic interstitial lung disease (GLILD) is a distinct clinic-radio-pathological interstitial lung disease (ILD) that develops in 9% to 30% of patients with common variable immunodeficiency (CVID). Often related to extrapulmonary dysimmune disorders, it is associated with long-ter...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in immunology 2022-02, Vol.13, p.813491-813491
Main Authors: Cabanero-Navalon, Marta Dafne, Garcia-Bustos, Victor, Forero-Naranjo, Leonardo Fabio, Baettig-Arriagada, Eduardo José, Núñez-Beltrán, María, Cañada-Martínez, Antonio José, Forner Giner, Maria José, Catalán-Cáceres, Nelly, Martínez Francés, Manuela, Moral Moral, Pedro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-44fc7b6e8e121bc84d5913afc83c5332f0468bf12578f4bcaa19371aed4539203
cites cdi_FETCH-LOGICAL-c465t-44fc7b6e8e121bc84d5913afc83c5332f0468bf12578f4bcaa19371aed4539203
container_end_page 813491
container_issue
container_start_page 813491
container_title Frontiers in immunology
container_volume 13
creator Cabanero-Navalon, Marta Dafne
Garcia-Bustos, Victor
Forero-Naranjo, Leonardo Fabio
Baettig-Arriagada, Eduardo José
Núñez-Beltrán, María
Cañada-Martínez, Antonio José
Forner Giner, Maria José
Catalán-Cáceres, Nelly
Martínez Francés, Manuela
Moral Moral, Pedro
description Granulomatous-lymphocytic interstitial lung disease (GLILD) is a distinct clinic-radio-pathological interstitial lung disease (ILD) that develops in 9% to 30% of patients with common variable immunodeficiency (CVID). Often related to extrapulmonary dysimmune disorders, it is associated with long-term lung damage and poorer clinical outcomes. The aim of this study was to explore the potential use of the integration between clinical parameters, laboratory variables, and developed CT scan scoring systems to improve the diagnostic accuracy of non-invasive tools. A retrospective cross-sectional study of 50 CVID patients was conducted in a referral unit of primary immune deficiencies. Clinical variables including demographics and comorbidities; analytical parameters including immunoglobulin levels, lipid metabolism, and lymphocyte subpopulations; and radiological and lung function test parameters were collected. Baumann's GLILD score system was externally validated by two observers in high-resolution CT (HRCT) scans. We developed an exploratory predictive model by elastic net and Bayesian regression, assessed its discriminative capacity, and internally validated it using bootstrap resampling. Lymphadenopathies (adjusted OR 9.42), splenomegaly (adjusted OR 6.25), Baumann's GLILD score (adjusted OR 1.56), and CD8+ cell count (adjusted OR 0.9) were included in the model. The larger range of values of the validated Baumann's GLILD HRCT scoring system gives it greater predictability. Cohen's κ statistic was 0.832 (95% CI 0.70-0.90), showing high concordance between both observers. The combined model showed a very good discrimination capacity with an internally validated area under the curve (AUC) of 0.969. Models integrating clinics, laboratory, and CT scan scoring methods may improve the accuracy of non-invasive diagnosis of GLILD and might even preclude aggressive diagnostic tools such as lung biopsy in selected patients.
doi_str_mv 10.3389/fimmu.2022.813491
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4dff77f9407841d488b4a197bfd0a4e6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4dff77f9407841d488b4a197bfd0a4e6</doaj_id><sourcerecordid>2638945574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-44fc7b6e8e121bc84d5913afc83c5332f0468bf12578f4bcaa19371aed4539203</originalsourceid><addsrcrecordid>eNpVks1u1DAUhSMEolXpA7BBXrJohvgnibNBQlPajjQSEgK21o1znXEV24OdIM3L8Kx4OqVqvbF1fe53j-xTFO9pteJcdp-MdW5ZsYqxlaRcdPRVcU6bRpScMfH62fmsuEzpvspLdJzz-m1xxmsmadXW58XfjZ9xjDBbP5L1ZL3V6YpsoQ-5FuLhioAfyMbBeBSYEMm8Q3JtYfQh2USCIevgXPDkF0QL_YRZ7BYfBjRWW_T6UH7HCWYcyG0Ev0zBZfCSyu3B7XdBH2arydFETLOdLUxku-RJ1zYhJHxXvDEwJbx83C-Knzdff6zvyu232836y7bUoqnnUgij275BiZTRXksx1B3lYLTkuuacmUo0sjeU1a00otcAtOMtBRxEzTtW8Ytic-IOAe7VPloH8aACWPVQCHFUELPTCZUYjGlb04mqlYIOQspeZFzbm6ECgU1mfT6x9kvvcNDo5wjTC-jLG293agx_lOyqRrQ8Az4-AmL4vWCalbNJ4zSBx_xyijX5_0VdtyJL6UmqY0gponkaQyt1jIl6iIk6xkSdYpJ7Pjz399TxPxT8H90zvdQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638945574</pqid></control><display><type>article</type><title>Integrating Clinics, Laboratory, and Imaging for the Diagnosis of Common Variable Immunodeficiency-Related Granulomatous-Lymphocytic Interstitial Lung Disease</title><source>PubMed Central (Open Access)</source><creator>Cabanero-Navalon, Marta Dafne ; Garcia-Bustos, Victor ; Forero-Naranjo, Leonardo Fabio ; Baettig-Arriagada, Eduardo José ; Núñez-Beltrán, María ; Cañada-Martínez, Antonio José ; Forner Giner, Maria José ; Catalán-Cáceres, Nelly ; Martínez Francés, Manuela ; Moral Moral, Pedro</creator><creatorcontrib>Cabanero-Navalon, Marta Dafne ; Garcia-Bustos, Victor ; Forero-Naranjo, Leonardo Fabio ; Baettig-Arriagada, Eduardo José ; Núñez-Beltrán, María ; Cañada-Martínez, Antonio José ; Forner Giner, Maria José ; Catalán-Cáceres, Nelly ; Martínez Francés, Manuela ; Moral Moral, Pedro</creatorcontrib><description>Granulomatous-lymphocytic interstitial lung disease (GLILD) is a distinct clinic-radio-pathological interstitial lung disease (ILD) that develops in 9% to 30% of patients with common variable immunodeficiency (CVID). Often related to extrapulmonary dysimmune disorders, it is associated with long-term lung damage and poorer clinical outcomes. The aim of this study was to explore the potential use of the integration between clinical parameters, laboratory variables, and developed CT scan scoring systems to improve the diagnostic accuracy of non-invasive tools. A retrospective cross-sectional study of 50 CVID patients was conducted in a referral unit of primary immune deficiencies. Clinical variables including demographics and comorbidities; analytical parameters including immunoglobulin levels, lipid metabolism, and lymphocyte subpopulations; and radiological and lung function test parameters were collected. Baumann's GLILD score system was externally validated by two observers in high-resolution CT (HRCT) scans. We developed an exploratory predictive model by elastic net and Bayesian regression, assessed its discriminative capacity, and internally validated it using bootstrap resampling. Lymphadenopathies (adjusted OR 9.42), splenomegaly (adjusted OR 6.25), Baumann's GLILD score (adjusted OR 1.56), and CD8+ cell count (adjusted OR 0.9) were included in the model. The larger range of values of the validated Baumann's GLILD HRCT scoring system gives it greater predictability. Cohen's κ statistic was 0.832 (95% CI 0.70-0.90), showing high concordance between both observers. The combined model showed a very good discrimination capacity with an internally validated area under the curve (AUC) of 0.969. Models integrating clinics, laboratory, and CT scan scoring methods may improve the accuracy of non-invasive diagnosis of GLILD and might even preclude aggressive diagnostic tools such as lung biopsy in selected patients.</description><identifier>ISSN: 1664-3224</identifier><identifier>EISSN: 1664-3224</identifier><identifier>DOI: 10.3389/fimmu.2022.813491</identifier><identifier>PMID: 35281075</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Bayes Theorem ; common variable immunodeficiency ; Common Variable Immunodeficiency - complications ; Common Variable Immunodeficiency - diagnostic imaging ; Cross-Sectional Studies ; CVID ; diagnosis ; GLILD ; Humans ; Immunology ; interstitial lung disease ; Lung Diseases, Interstitial - diagnostic imaging ; Lung Diseases, Interstitial - etiology ; predictive model ; Retrospective Studies</subject><ispartof>Frontiers in immunology, 2022-02, Vol.13, p.813491-813491</ispartof><rights>Copyright © 2022 Cabanero-Navalon, Garcia-Bustos, Forero-Naranjo, Baettig-Arriagada, Núñez-Beltrán, Cañada-Martínez, Forner Giner, Catalán-Cáceres, Martínez Francés and Moral Moral.</rights><rights>Copyright © 2022 Cabanero-Navalon, Garcia-Bustos, Forero-Naranjo, Baettig-Arriagada, Núñez-Beltrán, Cañada-Martínez, Forner Giner, Catalán-Cáceres, Martínez Francés and Moral Moral 2022 Cabanero-Navalon, Garcia-Bustos, Forero-Naranjo, Baettig-Arriagada, Núñez-Beltrán, Cañada-Martínez, Forner Giner, Catalán-Cáceres, Martínez Francés and Moral Moral</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-44fc7b6e8e121bc84d5913afc83c5332f0468bf12578f4bcaa19371aed4539203</citedby><cites>FETCH-LOGICAL-c465t-44fc7b6e8e121bc84d5913afc83c5332f0468bf12578f4bcaa19371aed4539203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906473/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906473/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35281075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cabanero-Navalon, Marta Dafne</creatorcontrib><creatorcontrib>Garcia-Bustos, Victor</creatorcontrib><creatorcontrib>Forero-Naranjo, Leonardo Fabio</creatorcontrib><creatorcontrib>Baettig-Arriagada, Eduardo José</creatorcontrib><creatorcontrib>Núñez-Beltrán, María</creatorcontrib><creatorcontrib>Cañada-Martínez, Antonio José</creatorcontrib><creatorcontrib>Forner Giner, Maria José</creatorcontrib><creatorcontrib>Catalán-Cáceres, Nelly</creatorcontrib><creatorcontrib>Martínez Francés, Manuela</creatorcontrib><creatorcontrib>Moral Moral, Pedro</creatorcontrib><title>Integrating Clinics, Laboratory, and Imaging for the Diagnosis of Common Variable Immunodeficiency-Related Granulomatous-Lymphocytic Interstitial Lung Disease</title><title>Frontiers in immunology</title><addtitle>Front Immunol</addtitle><description>Granulomatous-lymphocytic interstitial lung disease (GLILD) is a distinct clinic-radio-pathological interstitial lung disease (ILD) that develops in 9% to 30% of patients with common variable immunodeficiency (CVID). Often related to extrapulmonary dysimmune disorders, it is associated with long-term lung damage and poorer clinical outcomes. The aim of this study was to explore the potential use of the integration between clinical parameters, laboratory variables, and developed CT scan scoring systems to improve the diagnostic accuracy of non-invasive tools. A retrospective cross-sectional study of 50 CVID patients was conducted in a referral unit of primary immune deficiencies. Clinical variables including demographics and comorbidities; analytical parameters including immunoglobulin levels, lipid metabolism, and lymphocyte subpopulations; and radiological and lung function test parameters were collected. Baumann's GLILD score system was externally validated by two observers in high-resolution CT (HRCT) scans. We developed an exploratory predictive model by elastic net and Bayesian regression, assessed its discriminative capacity, and internally validated it using bootstrap resampling. Lymphadenopathies (adjusted OR 9.42), splenomegaly (adjusted OR 6.25), Baumann's GLILD score (adjusted OR 1.56), and CD8+ cell count (adjusted OR 0.9) were included in the model. The larger range of values of the validated Baumann's GLILD HRCT scoring system gives it greater predictability. Cohen's κ statistic was 0.832 (95% CI 0.70-0.90), showing high concordance between both observers. The combined model showed a very good discrimination capacity with an internally validated area under the curve (AUC) of 0.969. Models integrating clinics, laboratory, and CT scan scoring methods may improve the accuracy of non-invasive diagnosis of GLILD and might even preclude aggressive diagnostic tools such as lung biopsy in selected patients.</description><subject>Bayes Theorem</subject><subject>common variable immunodeficiency</subject><subject>Common Variable Immunodeficiency - complications</subject><subject>Common Variable Immunodeficiency - diagnostic imaging</subject><subject>Cross-Sectional Studies</subject><subject>CVID</subject><subject>diagnosis</subject><subject>GLILD</subject><subject>Humans</subject><subject>Immunology</subject><subject>interstitial lung disease</subject><subject>Lung Diseases, Interstitial - diagnostic imaging</subject><subject>Lung Diseases, Interstitial - etiology</subject><subject>predictive model</subject><subject>Retrospective Studies</subject><issn>1664-3224</issn><issn>1664-3224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVks1u1DAUhSMEolXpA7BBXrJohvgnibNBQlPajjQSEgK21o1znXEV24OdIM3L8Kx4OqVqvbF1fe53j-xTFO9pteJcdp-MdW5ZsYqxlaRcdPRVcU6bRpScMfH62fmsuEzpvspLdJzz-m1xxmsmadXW58XfjZ9xjDBbP5L1ZL3V6YpsoQ-5FuLhioAfyMbBeBSYEMm8Q3JtYfQh2USCIevgXPDkF0QL_YRZ7BYfBjRWW_T6UH7HCWYcyG0Ev0zBZfCSyu3B7XdBH2arydFETLOdLUxku-RJ1zYhJHxXvDEwJbx83C-Knzdff6zvyu232836y7bUoqnnUgij275BiZTRXksx1B3lYLTkuuacmUo0sjeU1a00otcAtOMtBRxEzTtW8Ytic-IOAe7VPloH8aACWPVQCHFUELPTCZUYjGlb04mqlYIOQspeZFzbm6ECgU1mfT6x9kvvcNDo5wjTC-jLG293agx_lOyqRrQ8Az4-AmL4vWCalbNJ4zSBx_xyijX5_0VdtyJL6UmqY0gponkaQyt1jIl6iIk6xkSdYpJ7Pjz399TxPxT8H90zvdQ</recordid><startdate>20220223</startdate><enddate>20220223</enddate><creator>Cabanero-Navalon, Marta Dafne</creator><creator>Garcia-Bustos, Victor</creator><creator>Forero-Naranjo, Leonardo Fabio</creator><creator>Baettig-Arriagada, Eduardo José</creator><creator>Núñez-Beltrán, María</creator><creator>Cañada-Martínez, Antonio José</creator><creator>Forner Giner, Maria José</creator><creator>Catalán-Cáceres, Nelly</creator><creator>Martínez Francés, Manuela</creator><creator>Moral Moral, Pedro</creator><general>Frontiers Media S.A</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220223</creationdate><title>Integrating Clinics, Laboratory, and Imaging for the Diagnosis of Common Variable Immunodeficiency-Related Granulomatous-Lymphocytic Interstitial Lung Disease</title><author>Cabanero-Navalon, Marta Dafne ; Garcia-Bustos, Victor ; Forero-Naranjo, Leonardo Fabio ; Baettig-Arriagada, Eduardo José ; Núñez-Beltrán, María ; Cañada-Martínez, Antonio José ; Forner Giner, Maria José ; Catalán-Cáceres, Nelly ; Martínez Francés, Manuela ; Moral Moral, Pedro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-44fc7b6e8e121bc84d5913afc83c5332f0468bf12578f4bcaa19371aed4539203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayes Theorem</topic><topic>common variable immunodeficiency</topic><topic>Common Variable Immunodeficiency - complications</topic><topic>Common Variable Immunodeficiency - diagnostic imaging</topic><topic>Cross-Sectional Studies</topic><topic>CVID</topic><topic>diagnosis</topic><topic>GLILD</topic><topic>Humans</topic><topic>Immunology</topic><topic>interstitial lung disease</topic><topic>Lung Diseases, Interstitial - diagnostic imaging</topic><topic>Lung Diseases, Interstitial - etiology</topic><topic>predictive model</topic><topic>Retrospective Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabanero-Navalon, Marta Dafne</creatorcontrib><creatorcontrib>Garcia-Bustos, Victor</creatorcontrib><creatorcontrib>Forero-Naranjo, Leonardo Fabio</creatorcontrib><creatorcontrib>Baettig-Arriagada, Eduardo José</creatorcontrib><creatorcontrib>Núñez-Beltrán, María</creatorcontrib><creatorcontrib>Cañada-Martínez, Antonio José</creatorcontrib><creatorcontrib>Forner Giner, Maria José</creatorcontrib><creatorcontrib>Catalán-Cáceres, Nelly</creatorcontrib><creatorcontrib>Martínez Francés, Manuela</creatorcontrib><creatorcontrib>Moral Moral, Pedro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabanero-Navalon, Marta Dafne</au><au>Garcia-Bustos, Victor</au><au>Forero-Naranjo, Leonardo Fabio</au><au>Baettig-Arriagada, Eduardo José</au><au>Núñez-Beltrán, María</au><au>Cañada-Martínez, Antonio José</au><au>Forner Giner, Maria José</au><au>Catalán-Cáceres, Nelly</au><au>Martínez Francés, Manuela</au><au>Moral Moral, Pedro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Clinics, Laboratory, and Imaging for the Diagnosis of Common Variable Immunodeficiency-Related Granulomatous-Lymphocytic Interstitial Lung Disease</atitle><jtitle>Frontiers in immunology</jtitle><addtitle>Front Immunol</addtitle><date>2022-02-23</date><risdate>2022</risdate><volume>13</volume><spage>813491</spage><epage>813491</epage><pages>813491-813491</pages><issn>1664-3224</issn><eissn>1664-3224</eissn><abstract>Granulomatous-lymphocytic interstitial lung disease (GLILD) is a distinct clinic-radio-pathological interstitial lung disease (ILD) that develops in 9% to 30% of patients with common variable immunodeficiency (CVID). Often related to extrapulmonary dysimmune disorders, it is associated with long-term lung damage and poorer clinical outcomes. The aim of this study was to explore the potential use of the integration between clinical parameters, laboratory variables, and developed CT scan scoring systems to improve the diagnostic accuracy of non-invasive tools. A retrospective cross-sectional study of 50 CVID patients was conducted in a referral unit of primary immune deficiencies. Clinical variables including demographics and comorbidities; analytical parameters including immunoglobulin levels, lipid metabolism, and lymphocyte subpopulations; and radiological and lung function test parameters were collected. Baumann's GLILD score system was externally validated by two observers in high-resolution CT (HRCT) scans. We developed an exploratory predictive model by elastic net and Bayesian regression, assessed its discriminative capacity, and internally validated it using bootstrap resampling. Lymphadenopathies (adjusted OR 9.42), splenomegaly (adjusted OR 6.25), Baumann's GLILD score (adjusted OR 1.56), and CD8+ cell count (adjusted OR 0.9) were included in the model. The larger range of values of the validated Baumann's GLILD HRCT scoring system gives it greater predictability. Cohen's κ statistic was 0.832 (95% CI 0.70-0.90), showing high concordance between both observers. The combined model showed a very good discrimination capacity with an internally validated area under the curve (AUC) of 0.969. Models integrating clinics, laboratory, and CT scan scoring methods may improve the accuracy of non-invasive diagnosis of GLILD and might even preclude aggressive diagnostic tools such as lung biopsy in selected patients.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>35281075</pmid><doi>10.3389/fimmu.2022.813491</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-3224
ispartof Frontiers in immunology, 2022-02, Vol.13, p.813491-813491
issn 1664-3224
1664-3224
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4dff77f9407841d488b4a197bfd0a4e6
source PubMed Central (Open Access)
subjects Bayes Theorem
common variable immunodeficiency
Common Variable Immunodeficiency - complications
Common Variable Immunodeficiency - diagnostic imaging
Cross-Sectional Studies
CVID
diagnosis
GLILD
Humans
Immunology
interstitial lung disease
Lung Diseases, Interstitial - diagnostic imaging
Lung Diseases, Interstitial - etiology
predictive model
Retrospective Studies
title Integrating Clinics, Laboratory, and Imaging for the Diagnosis of Common Variable Immunodeficiency-Related Granulomatous-Lymphocytic Interstitial Lung Disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Clinics,%20Laboratory,%20and%20Imaging%20for%20the%20Diagnosis%20of%20Common%20Variable%20Immunodeficiency-Related%20Granulomatous-Lymphocytic%20Interstitial%20Lung%20Disease&rft.jtitle=Frontiers%20in%20immunology&rft.au=Cabanero-Navalon,%20Marta%20Dafne&rft.date=2022-02-23&rft.volume=13&rft.spage=813491&rft.epage=813491&rft.pages=813491-813491&rft.issn=1664-3224&rft.eissn=1664-3224&rft_id=info:doi/10.3389/fimmu.2022.813491&rft_dat=%3Cproquest_doaj_%3E2638945574%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-44fc7b6e8e121bc84d5913afc83c5332f0468bf12578f4bcaa19371aed4539203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2638945574&rft_id=info:pmid/35281075&rfr_iscdi=true