Loading…
Integrating Clinics, Laboratory, and Imaging for the Diagnosis of Common Variable Immunodeficiency-Related Granulomatous-Lymphocytic Interstitial Lung Disease
Granulomatous-lymphocytic interstitial lung disease (GLILD) is a distinct clinic-radio-pathological interstitial lung disease (ILD) that develops in 9% to 30% of patients with common variable immunodeficiency (CVID). Often related to extrapulmonary dysimmune disorders, it is associated with long-ter...
Saved in:
Published in: | Frontiers in immunology 2022-02, Vol.13, p.813491-813491 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-44fc7b6e8e121bc84d5913afc83c5332f0468bf12578f4bcaa19371aed4539203 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-44fc7b6e8e121bc84d5913afc83c5332f0468bf12578f4bcaa19371aed4539203 |
container_end_page | 813491 |
container_issue | |
container_start_page | 813491 |
container_title | Frontiers in immunology |
container_volume | 13 |
creator | Cabanero-Navalon, Marta Dafne Garcia-Bustos, Victor Forero-Naranjo, Leonardo Fabio Baettig-Arriagada, Eduardo José Núñez-Beltrán, María Cañada-Martínez, Antonio José Forner Giner, Maria José Catalán-Cáceres, Nelly Martínez Francés, Manuela Moral Moral, Pedro |
description | Granulomatous-lymphocytic interstitial lung disease (GLILD) is a distinct clinic-radio-pathological interstitial lung disease (ILD) that develops in 9% to 30% of patients with common variable immunodeficiency (CVID). Often related to extrapulmonary dysimmune disorders, it is associated with long-term lung damage and poorer clinical outcomes. The aim of this study was to explore the potential use of the integration between clinical parameters, laboratory variables, and developed CT scan scoring systems to improve the diagnostic accuracy of non-invasive tools.
A retrospective cross-sectional study of 50 CVID patients was conducted in a referral unit of primary immune deficiencies. Clinical variables including demographics and comorbidities; analytical parameters including immunoglobulin levels, lipid metabolism, and lymphocyte subpopulations; and radiological and lung function test parameters were collected. Baumann's GLILD score system was externally validated by two observers in high-resolution CT (HRCT) scans. We developed an exploratory predictive model by elastic net and Bayesian regression, assessed its discriminative capacity, and internally validated it using bootstrap resampling.
Lymphadenopathies (adjusted OR 9.42), splenomegaly (adjusted OR 6.25), Baumann's GLILD score (adjusted OR 1.56), and CD8+ cell count (adjusted OR 0.9) were included in the model. The larger range of values of the validated Baumann's GLILD HRCT scoring system gives it greater predictability. Cohen's κ statistic was 0.832 (95% CI 0.70-0.90), showing high concordance between both observers. The combined model showed a very good discrimination capacity with an internally validated area under the curve (AUC) of 0.969.
Models integrating clinics, laboratory, and CT scan scoring methods may improve the accuracy of non-invasive diagnosis of GLILD and might even preclude aggressive diagnostic tools such as lung biopsy in selected patients. |
doi_str_mv | 10.3389/fimmu.2022.813491 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4dff77f9407841d488b4a197bfd0a4e6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4dff77f9407841d488b4a197bfd0a4e6</doaj_id><sourcerecordid>2638945574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-44fc7b6e8e121bc84d5913afc83c5332f0468bf12578f4bcaa19371aed4539203</originalsourceid><addsrcrecordid>eNpVks1u1DAUhSMEolXpA7BBXrJohvgnibNBQlPajjQSEgK21o1znXEV24OdIM3L8Kx4OqVqvbF1fe53j-xTFO9pteJcdp-MdW5ZsYqxlaRcdPRVcU6bRpScMfH62fmsuEzpvspLdJzz-m1xxmsmadXW58XfjZ9xjDBbP5L1ZL3V6YpsoQ-5FuLhioAfyMbBeBSYEMm8Q3JtYfQh2USCIevgXPDkF0QL_YRZ7BYfBjRWW_T6UH7HCWYcyG0Ev0zBZfCSyu3B7XdBH2arydFETLOdLUxku-RJ1zYhJHxXvDEwJbx83C-Knzdff6zvyu232836y7bUoqnnUgij275BiZTRXksx1B3lYLTkuuacmUo0sjeU1a00otcAtOMtBRxEzTtW8Ytic-IOAe7VPloH8aACWPVQCHFUELPTCZUYjGlb04mqlYIOQspeZFzbm6ECgU1mfT6x9kvvcNDo5wjTC-jLG293agx_lOyqRrQ8Az4-AmL4vWCalbNJ4zSBx_xyijX5_0VdtyJL6UmqY0gponkaQyt1jIl6iIk6xkSdYpJ7Pjz399TxPxT8H90zvdQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638945574</pqid></control><display><type>article</type><title>Integrating Clinics, Laboratory, and Imaging for the Diagnosis of Common Variable Immunodeficiency-Related Granulomatous-Lymphocytic Interstitial Lung Disease</title><source>PubMed Central (Open Access)</source><creator>Cabanero-Navalon, Marta Dafne ; Garcia-Bustos, Victor ; Forero-Naranjo, Leonardo Fabio ; Baettig-Arriagada, Eduardo José ; Núñez-Beltrán, María ; Cañada-Martínez, Antonio José ; Forner Giner, Maria José ; Catalán-Cáceres, Nelly ; Martínez Francés, Manuela ; Moral Moral, Pedro</creator><creatorcontrib>Cabanero-Navalon, Marta Dafne ; Garcia-Bustos, Victor ; Forero-Naranjo, Leonardo Fabio ; Baettig-Arriagada, Eduardo José ; Núñez-Beltrán, María ; Cañada-Martínez, Antonio José ; Forner Giner, Maria José ; Catalán-Cáceres, Nelly ; Martínez Francés, Manuela ; Moral Moral, Pedro</creatorcontrib><description>Granulomatous-lymphocytic interstitial lung disease (GLILD) is a distinct clinic-radio-pathological interstitial lung disease (ILD) that develops in 9% to 30% of patients with common variable immunodeficiency (CVID). Often related to extrapulmonary dysimmune disorders, it is associated with long-term lung damage and poorer clinical outcomes. The aim of this study was to explore the potential use of the integration between clinical parameters, laboratory variables, and developed CT scan scoring systems to improve the diagnostic accuracy of non-invasive tools.
A retrospective cross-sectional study of 50 CVID patients was conducted in a referral unit of primary immune deficiencies. Clinical variables including demographics and comorbidities; analytical parameters including immunoglobulin levels, lipid metabolism, and lymphocyte subpopulations; and radiological and lung function test parameters were collected. Baumann's GLILD score system was externally validated by two observers in high-resolution CT (HRCT) scans. We developed an exploratory predictive model by elastic net and Bayesian regression, assessed its discriminative capacity, and internally validated it using bootstrap resampling.
Lymphadenopathies (adjusted OR 9.42), splenomegaly (adjusted OR 6.25), Baumann's GLILD score (adjusted OR 1.56), and CD8+ cell count (adjusted OR 0.9) were included in the model. The larger range of values of the validated Baumann's GLILD HRCT scoring system gives it greater predictability. Cohen's κ statistic was 0.832 (95% CI 0.70-0.90), showing high concordance between both observers. The combined model showed a very good discrimination capacity with an internally validated area under the curve (AUC) of 0.969.
Models integrating clinics, laboratory, and CT scan scoring methods may improve the accuracy of non-invasive diagnosis of GLILD and might even preclude aggressive diagnostic tools such as lung biopsy in selected patients.</description><identifier>ISSN: 1664-3224</identifier><identifier>EISSN: 1664-3224</identifier><identifier>DOI: 10.3389/fimmu.2022.813491</identifier><identifier>PMID: 35281075</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Bayes Theorem ; common variable immunodeficiency ; Common Variable Immunodeficiency - complications ; Common Variable Immunodeficiency - diagnostic imaging ; Cross-Sectional Studies ; CVID ; diagnosis ; GLILD ; Humans ; Immunology ; interstitial lung disease ; Lung Diseases, Interstitial - diagnostic imaging ; Lung Diseases, Interstitial - etiology ; predictive model ; Retrospective Studies</subject><ispartof>Frontiers in immunology, 2022-02, Vol.13, p.813491-813491</ispartof><rights>Copyright © 2022 Cabanero-Navalon, Garcia-Bustos, Forero-Naranjo, Baettig-Arriagada, Núñez-Beltrán, Cañada-Martínez, Forner Giner, Catalán-Cáceres, Martínez Francés and Moral Moral.</rights><rights>Copyright © 2022 Cabanero-Navalon, Garcia-Bustos, Forero-Naranjo, Baettig-Arriagada, Núñez-Beltrán, Cañada-Martínez, Forner Giner, Catalán-Cáceres, Martínez Francés and Moral Moral 2022 Cabanero-Navalon, Garcia-Bustos, Forero-Naranjo, Baettig-Arriagada, Núñez-Beltrán, Cañada-Martínez, Forner Giner, Catalán-Cáceres, Martínez Francés and Moral Moral</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-44fc7b6e8e121bc84d5913afc83c5332f0468bf12578f4bcaa19371aed4539203</citedby><cites>FETCH-LOGICAL-c465t-44fc7b6e8e121bc84d5913afc83c5332f0468bf12578f4bcaa19371aed4539203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906473/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906473/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35281075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cabanero-Navalon, Marta Dafne</creatorcontrib><creatorcontrib>Garcia-Bustos, Victor</creatorcontrib><creatorcontrib>Forero-Naranjo, Leonardo Fabio</creatorcontrib><creatorcontrib>Baettig-Arriagada, Eduardo José</creatorcontrib><creatorcontrib>Núñez-Beltrán, María</creatorcontrib><creatorcontrib>Cañada-Martínez, Antonio José</creatorcontrib><creatorcontrib>Forner Giner, Maria José</creatorcontrib><creatorcontrib>Catalán-Cáceres, Nelly</creatorcontrib><creatorcontrib>Martínez Francés, Manuela</creatorcontrib><creatorcontrib>Moral Moral, Pedro</creatorcontrib><title>Integrating Clinics, Laboratory, and Imaging for the Diagnosis of Common Variable Immunodeficiency-Related Granulomatous-Lymphocytic Interstitial Lung Disease</title><title>Frontiers in immunology</title><addtitle>Front Immunol</addtitle><description>Granulomatous-lymphocytic interstitial lung disease (GLILD) is a distinct clinic-radio-pathological interstitial lung disease (ILD) that develops in 9% to 30% of patients with common variable immunodeficiency (CVID). Often related to extrapulmonary dysimmune disorders, it is associated with long-term lung damage and poorer clinical outcomes. The aim of this study was to explore the potential use of the integration between clinical parameters, laboratory variables, and developed CT scan scoring systems to improve the diagnostic accuracy of non-invasive tools.
A retrospective cross-sectional study of 50 CVID patients was conducted in a referral unit of primary immune deficiencies. Clinical variables including demographics and comorbidities; analytical parameters including immunoglobulin levels, lipid metabolism, and lymphocyte subpopulations; and radiological and lung function test parameters were collected. Baumann's GLILD score system was externally validated by two observers in high-resolution CT (HRCT) scans. We developed an exploratory predictive model by elastic net and Bayesian regression, assessed its discriminative capacity, and internally validated it using bootstrap resampling.
Lymphadenopathies (adjusted OR 9.42), splenomegaly (adjusted OR 6.25), Baumann's GLILD score (adjusted OR 1.56), and CD8+ cell count (adjusted OR 0.9) were included in the model. The larger range of values of the validated Baumann's GLILD HRCT scoring system gives it greater predictability. Cohen's κ statistic was 0.832 (95% CI 0.70-0.90), showing high concordance between both observers. The combined model showed a very good discrimination capacity with an internally validated area under the curve (AUC) of 0.969.
Models integrating clinics, laboratory, and CT scan scoring methods may improve the accuracy of non-invasive diagnosis of GLILD and might even preclude aggressive diagnostic tools such as lung biopsy in selected patients.</description><subject>Bayes Theorem</subject><subject>common variable immunodeficiency</subject><subject>Common Variable Immunodeficiency - complications</subject><subject>Common Variable Immunodeficiency - diagnostic imaging</subject><subject>Cross-Sectional Studies</subject><subject>CVID</subject><subject>diagnosis</subject><subject>GLILD</subject><subject>Humans</subject><subject>Immunology</subject><subject>interstitial lung disease</subject><subject>Lung Diseases, Interstitial - diagnostic imaging</subject><subject>Lung Diseases, Interstitial - etiology</subject><subject>predictive model</subject><subject>Retrospective Studies</subject><issn>1664-3224</issn><issn>1664-3224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVks1u1DAUhSMEolXpA7BBXrJohvgnibNBQlPajjQSEgK21o1znXEV24OdIM3L8Kx4OqVqvbF1fe53j-xTFO9pteJcdp-MdW5ZsYqxlaRcdPRVcU6bRpScMfH62fmsuEzpvspLdJzz-m1xxmsmadXW58XfjZ9xjDBbP5L1ZL3V6YpsoQ-5FuLhioAfyMbBeBSYEMm8Q3JtYfQh2USCIevgXPDkF0QL_YRZ7BYfBjRWW_T6UH7HCWYcyG0Ev0zBZfCSyu3B7XdBH2arydFETLOdLUxku-RJ1zYhJHxXvDEwJbx83C-Knzdff6zvyu232836y7bUoqnnUgij275BiZTRXksx1B3lYLTkuuacmUo0sjeU1a00otcAtOMtBRxEzTtW8Ytic-IOAe7VPloH8aACWPVQCHFUELPTCZUYjGlb04mqlYIOQspeZFzbm6ECgU1mfT6x9kvvcNDo5wjTC-jLG293agx_lOyqRrQ8Az4-AmL4vWCalbNJ4zSBx_xyijX5_0VdtyJL6UmqY0gponkaQyt1jIl6iIk6xkSdYpJ7Pjz399TxPxT8H90zvdQ</recordid><startdate>20220223</startdate><enddate>20220223</enddate><creator>Cabanero-Navalon, Marta Dafne</creator><creator>Garcia-Bustos, Victor</creator><creator>Forero-Naranjo, Leonardo Fabio</creator><creator>Baettig-Arriagada, Eduardo José</creator><creator>Núñez-Beltrán, María</creator><creator>Cañada-Martínez, Antonio José</creator><creator>Forner Giner, Maria José</creator><creator>Catalán-Cáceres, Nelly</creator><creator>Martínez Francés, Manuela</creator><creator>Moral Moral, Pedro</creator><general>Frontiers Media S.A</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220223</creationdate><title>Integrating Clinics, Laboratory, and Imaging for the Diagnosis of Common Variable Immunodeficiency-Related Granulomatous-Lymphocytic Interstitial Lung Disease</title><author>Cabanero-Navalon, Marta Dafne ; Garcia-Bustos, Victor ; Forero-Naranjo, Leonardo Fabio ; Baettig-Arriagada, Eduardo José ; Núñez-Beltrán, María ; Cañada-Martínez, Antonio José ; Forner Giner, Maria José ; Catalán-Cáceres, Nelly ; Martínez Francés, Manuela ; Moral Moral, Pedro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-44fc7b6e8e121bc84d5913afc83c5332f0468bf12578f4bcaa19371aed4539203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayes Theorem</topic><topic>common variable immunodeficiency</topic><topic>Common Variable Immunodeficiency - complications</topic><topic>Common Variable Immunodeficiency - diagnostic imaging</topic><topic>Cross-Sectional Studies</topic><topic>CVID</topic><topic>diagnosis</topic><topic>GLILD</topic><topic>Humans</topic><topic>Immunology</topic><topic>interstitial lung disease</topic><topic>Lung Diseases, Interstitial - diagnostic imaging</topic><topic>Lung Diseases, Interstitial - etiology</topic><topic>predictive model</topic><topic>Retrospective Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabanero-Navalon, Marta Dafne</creatorcontrib><creatorcontrib>Garcia-Bustos, Victor</creatorcontrib><creatorcontrib>Forero-Naranjo, Leonardo Fabio</creatorcontrib><creatorcontrib>Baettig-Arriagada, Eduardo José</creatorcontrib><creatorcontrib>Núñez-Beltrán, María</creatorcontrib><creatorcontrib>Cañada-Martínez, Antonio José</creatorcontrib><creatorcontrib>Forner Giner, Maria José</creatorcontrib><creatorcontrib>Catalán-Cáceres, Nelly</creatorcontrib><creatorcontrib>Martínez Francés, Manuela</creatorcontrib><creatorcontrib>Moral Moral, Pedro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabanero-Navalon, Marta Dafne</au><au>Garcia-Bustos, Victor</au><au>Forero-Naranjo, Leonardo Fabio</au><au>Baettig-Arriagada, Eduardo José</au><au>Núñez-Beltrán, María</au><au>Cañada-Martínez, Antonio José</au><au>Forner Giner, Maria José</au><au>Catalán-Cáceres, Nelly</au><au>Martínez Francés, Manuela</au><au>Moral Moral, Pedro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Clinics, Laboratory, and Imaging for the Diagnosis of Common Variable Immunodeficiency-Related Granulomatous-Lymphocytic Interstitial Lung Disease</atitle><jtitle>Frontiers in immunology</jtitle><addtitle>Front Immunol</addtitle><date>2022-02-23</date><risdate>2022</risdate><volume>13</volume><spage>813491</spage><epage>813491</epage><pages>813491-813491</pages><issn>1664-3224</issn><eissn>1664-3224</eissn><abstract>Granulomatous-lymphocytic interstitial lung disease (GLILD) is a distinct clinic-radio-pathological interstitial lung disease (ILD) that develops in 9% to 30% of patients with common variable immunodeficiency (CVID). Often related to extrapulmonary dysimmune disorders, it is associated with long-term lung damage and poorer clinical outcomes. The aim of this study was to explore the potential use of the integration between clinical parameters, laboratory variables, and developed CT scan scoring systems to improve the diagnostic accuracy of non-invasive tools.
A retrospective cross-sectional study of 50 CVID patients was conducted in a referral unit of primary immune deficiencies. Clinical variables including demographics and comorbidities; analytical parameters including immunoglobulin levels, lipid metabolism, and lymphocyte subpopulations; and radiological and lung function test parameters were collected. Baumann's GLILD score system was externally validated by two observers in high-resolution CT (HRCT) scans. We developed an exploratory predictive model by elastic net and Bayesian regression, assessed its discriminative capacity, and internally validated it using bootstrap resampling.
Lymphadenopathies (adjusted OR 9.42), splenomegaly (adjusted OR 6.25), Baumann's GLILD score (adjusted OR 1.56), and CD8+ cell count (adjusted OR 0.9) were included in the model. The larger range of values of the validated Baumann's GLILD HRCT scoring system gives it greater predictability. Cohen's κ statistic was 0.832 (95% CI 0.70-0.90), showing high concordance between both observers. The combined model showed a very good discrimination capacity with an internally validated area under the curve (AUC) of 0.969.
Models integrating clinics, laboratory, and CT scan scoring methods may improve the accuracy of non-invasive diagnosis of GLILD and might even preclude aggressive diagnostic tools such as lung biopsy in selected patients.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>35281075</pmid><doi>10.3389/fimmu.2022.813491</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-3224 |
ispartof | Frontiers in immunology, 2022-02, Vol.13, p.813491-813491 |
issn | 1664-3224 1664-3224 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4dff77f9407841d488b4a197bfd0a4e6 |
source | PubMed Central (Open Access) |
subjects | Bayes Theorem common variable immunodeficiency Common Variable Immunodeficiency - complications Common Variable Immunodeficiency - diagnostic imaging Cross-Sectional Studies CVID diagnosis GLILD Humans Immunology interstitial lung disease Lung Diseases, Interstitial - diagnostic imaging Lung Diseases, Interstitial - etiology predictive model Retrospective Studies |
title | Integrating Clinics, Laboratory, and Imaging for the Diagnosis of Common Variable Immunodeficiency-Related Granulomatous-Lymphocytic Interstitial Lung Disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Clinics,%20Laboratory,%20and%20Imaging%20for%20the%20Diagnosis%20of%20Common%20Variable%20Immunodeficiency-Related%20Granulomatous-Lymphocytic%20Interstitial%20Lung%20Disease&rft.jtitle=Frontiers%20in%20immunology&rft.au=Cabanero-Navalon,%20Marta%20Dafne&rft.date=2022-02-23&rft.volume=13&rft.spage=813491&rft.epage=813491&rft.pages=813491-813491&rft.issn=1664-3224&rft.eissn=1664-3224&rft_id=info:doi/10.3389/fimmu.2022.813491&rft_dat=%3Cproquest_doaj_%3E2638945574%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-44fc7b6e8e121bc84d5913afc83c5332f0468bf12578f4bcaa19371aed4539203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2638945574&rft_id=info:pmid/35281075&rfr_iscdi=true |