Loading…

The Biological Fate of Pharmaceutical Excipient β-Cyclodextrin: Pharmacokinetics, Tissue Distribution, Excretion, and Metabolism of β-Cyclodextrin in Rats

β-cyclodextrin has a unique annular hollow ultrastructure that allows encapsulation of various poorly water-soluble drugs in the resulting cavity, thereby increasing drug stability. As a bioactive molecule, the metabolism of β-cyclodextrin is mainly completed by the flora in the colon, which can int...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2022-02, Vol.27 (3), p.1138
Main Authors: Mu, Kunqian, Jiang, Kaiwen, Wang, Yue, Zhao, Zihan, Cang, Song, Bi, Kaishun, Li, Qing, Liu, Ran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:β-cyclodextrin has a unique annular hollow ultrastructure that allows encapsulation of various poorly water-soluble drugs in the resulting cavity, thereby increasing drug stability. As a bioactive molecule, the metabolism of β-cyclodextrin is mainly completed by the flora in the colon, which can interact with API. In this study, understanding the in vivo fate of β-cyclodextrin, a LC-MS/MS method was developed to facilitate simultaneous quantitative analysis of pharmaceutical excipient β-cyclodextrin and API dextromethorphan hydrobromide. The established method had been effectively used to study the pharmacokinetics, tissue distribution, excretion, and metabolism of β-cyclodextrin after oral administration in rats. Results showed that β-cyclodextrin was almost wholly removed from rat plasma within 36 h, and high concentrations of β-cyclodextrin distributed hastily to organs with increased blood flow velocities such as the spleen, liver, and kidney after administration. The excretion of intact β-cyclodextrin to urine and feces was lower than the administration dose. It can be speculated that β-cyclodextrin metabolized to maltodextrin, which was further metabolized, absorbed, and eventually discharged in the form of CO and H O. Results proved that β-cyclodextrin, with relative low accumulation in the body, had good safety. The results will assist further study of the design and safety evaluation of adjuvant β-cyclodextrin and promote its clinical development.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27031138