Loading…

Enhancing spent RFCC catalysts for biofuel production: Ultrasound-assisted acid treatment for improved crystallinity, pore size, and acid site ratio

This research aims to improve crystal structure and pore size and adjust Brønsted to Lewis (B/L) acid site ratio of spent RFCC catalyst through ultrasound-assisted acid treatment. The catalyst performance was tested to convert palm oil into biofuel through hydrogen-free catalytic cracking. Results s...

Full description

Saved in:
Bibliographic Details
Published in:Case studies in chemical and environmental engineering 2024-12, Vol.10, p.100843, Article 100843
Main Authors: Istadi, I., Kusumawati, Yunita, Riyanto, Teguh, Anggoro, Didi D., Jongsomjit, Bunjerd, Putranto, Ari Bawono
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This research aims to improve crystal structure and pore size and adjust Brønsted to Lewis (B/L) acid site ratio of spent RFCC catalyst through ultrasound-assisted acid treatment. The catalyst performance was tested to convert palm oil into biofuel through hydrogen-free catalytic cracking. Results showed that crystallinity and pore size of the spent RFCC catalysts were improved. The B/L acid site ratio of the acid treated catalysts could be adjusted, leading to improve the catalysts activity for palm oil cracking process. The main product of the cracking process was liquid fuel product, which was ranged at 85 %–96 % mass fraction. Compared to the liquid fuel product produced by conventional acid treatment, the RFCC catalysts that have been treated using ultrasound-assisted acid treatment produced a higher yield. The GC-MS results showed that hydrocarbons, alcohols, ketones, and aldehydes are main chemical components in gasoline and kerosene. [Display omitted]
ISSN:2666-0164
2666-0164
DOI:10.1016/j.cscee.2024.100843