Loading…

Tunable exciton valley-pseudospin orders in moiré superlattices

Excitons in two-dimensional (2D) semiconductors have offered an attractive platform for optoelectronic and valleytronic devices. Further realizations of correlated phases of excitons promise device concepts not possible in the single particle picture. Here we report tunable exciton “spin” orders in...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-05, Vol.15 (1), p.4254-4254, Article 4254
Main Authors: Xiong, Richen, Brantly, Samuel L., Su, Kaixiang, Nie, Jacob H., Zhang, Zihan, Banerjee, Rounak, Ruddick, Hayley, Watanabe, Kenji, Taniguchi, Takashi, Tongay, Seth Ariel, Xu, Cenke, Jin, Chenhao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c519t-ca3b7a070745e360fa6f121e93046405d16b14050ad95fa3df409771690512a3
container_end_page 4254
container_issue 1
container_start_page 4254
container_title Nature communications
container_volume 15
creator Xiong, Richen
Brantly, Samuel L.
Su, Kaixiang
Nie, Jacob H.
Zhang, Zihan
Banerjee, Rounak
Ruddick, Hayley
Watanabe, Kenji
Taniguchi, Takashi
Tongay, Seth Ariel
Xu, Cenke
Jin, Chenhao
description Excitons in two-dimensional (2D) semiconductors have offered an attractive platform for optoelectronic and valleytronic devices. Further realizations of correlated phases of excitons promise device concepts not possible in the single particle picture. Here we report tunable exciton “spin” orders in WSe 2 /WS 2 moiré superlattices. We find evidence of an in-plane ( xy ) order of exciton “spin”—here, valley pseudospin—around exciton filling v ex  = 1, which strongly suppresses the out-of-plane “spin” polarization. Upon increasing v ex or applying a small magnetic field of ~10 mT, it transitions into an out-of-plane ferromagnetic (FM -z ) spin order that spontaneously enhances the “spin” polarization, i.e., the circular helicity of emission light is higher than the excitation. The phase diagram is qualitatively captured by a spin-1/2 Bose–Hubbard model and is distinct from the fermion case. Our study paves the way for engineering exotic phases of matter from correlated spinor bosons, opening the door to a host of unconventional quantum devices. Control of correlated excitonic states is a key goal of modern optoelectronic physics. Here, the authors demonstrate filling- and field-tunable exciton valley-pseudospin orders in a moiré heterostructure.
doi_str_mv 10.1038/s41467-024-48725-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4e21ada437cc47a39885ca6fb5ac8da6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4e21ada437cc47a39885ca6fb5ac8da6</doaj_id><sourcerecordid>3056252171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-ca3b7a070745e360fa6f121e93046405d16b14050ad95fa3df409771690512a3</originalsourceid><addsrcrecordid>eNp9ks1u1DAQxyMEolXpC3BAEVx6CXj8mZwAVXxUqsRl79bEmWyzytqLnVRt34jn6IvhbkppOeDLWJ7f_Gc8-hfFa2DvgYn6Q5IgtakYl5WsDVfVzbPikDMJFRgunj-6HxTHKW1YPqKBWsqXxYGojeaKwWHxaTV7bEcq6coNU_DlJY4jXVe7RHMX0m7wZYgdxVTm2zYM8fZXmeYdxRGnaXCUXhUvehwTHd_Ho2L19cvq9Ht1_uPb2enn88opaKbKoWgNMsOMVCQ061H3wIEawaSWTHWgW8iRYdeoHkXXS9YYA7phCjiKo-Jske0CbuwuDluM1zbgYPcPIa4txjzQSFYSB-xQCuOcNCiaulYut2sVurpDnbU-Llq7ud1S58hPEccnok8zfriw63BpAYBxBSYrvF0UQpoGm_LmyF244D25yXJpoGYiQyf3bWL4OVOa7HZIjsYRPYU5WcGU1loafYe--wfdhDn6vM89xRUHA5niC-ViSClS_zAyMHtnCruYwmZT2L0p7E0uevP4sw8lfyyQAbEAKaf8muLf3v-R_Q0V7cI2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056252171</pqid></control><display><type>article</type><title>Tunable exciton valley-pseudospin orders in moiré superlattices</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Xiong, Richen ; Brantly, Samuel L. ; Su, Kaixiang ; Nie, Jacob H. ; Zhang, Zihan ; Banerjee, Rounak ; Ruddick, Hayley ; Watanabe, Kenji ; Taniguchi, Takashi ; Tongay, Seth Ariel ; Xu, Cenke ; Jin, Chenhao</creator><creatorcontrib>Xiong, Richen ; Brantly, Samuel L. ; Su, Kaixiang ; Nie, Jacob H. ; Zhang, Zihan ; Banerjee, Rounak ; Ruddick, Hayley ; Watanabe, Kenji ; Taniguchi, Takashi ; Tongay, Seth Ariel ; Xu, Cenke ; Jin, Chenhao ; Arizona State Univ., Tempe, AZ (United States)</creatorcontrib><description>Excitons in two-dimensional (2D) semiconductors have offered an attractive platform for optoelectronic and valleytronic devices. Further realizations of correlated phases of excitons promise device concepts not possible in the single particle picture. Here we report tunable exciton “spin” orders in WSe 2 /WS 2 moiré superlattices. We find evidence of an in-plane ( xy ) order of exciton “spin”—here, valley pseudospin—around exciton filling v ex  = 1, which strongly suppresses the out-of-plane “spin” polarization. Upon increasing v ex or applying a small magnetic field of ~10 mT, it transitions into an out-of-plane ferromagnetic (FM -z ) spin order that spontaneously enhances the “spin” polarization, i.e., the circular helicity of emission light is higher than the excitation. The phase diagram is qualitatively captured by a spin-1/2 Bose–Hubbard model and is distinct from the fermion case. Our study paves the way for engineering exotic phases of matter from correlated spinor bosons, opening the door to a host of unconventional quantum devices. Control of correlated excitonic states is a key goal of modern optoelectronic physics. Here, the authors demonstrate filling- and field-tunable exciton valley-pseudospin orders in a moiré heterostructure.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-48725-z</identifier><identifier>PMID: 38762501</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/766/119/2793 ; 639/766/119/2795 ; 639/766/119/999 ; 639/925/357/1018 ; Bosons ; Correlation ; Electrons ; Energy ; Excitons ; Fermions ; Ferromagnetism ; Helicity ; Heterostructures ; Humanities and Social Sciences ; Light ; Low dimensional semiconductors ; Magnetic fields ; multidisciplinary ; Optoelectronic devices ; Phase diagrams ; Polarization ; Polarization (spin alignment) ; Science ; Science &amp; Technology - Other Topics ; Science (multidisciplinary) ; Spectrum analysis ; Superlattices</subject><ispartof>Nature communications, 2024-05, Vol.15 (1), p.4254-4254, Article 4254</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c519t-ca3b7a070745e360fa6f121e93046405d16b14050ad95fa3df409771690512a3</cites><orcidid>0000-0002-5965-7475 ; 0000-0003-3701-8119 ; 0000-0002-9921-8493 ; 0000-0001-8294-984X ; 0000-0002-1467-3105 ; 000000018294984X ; 0000000299218493 ; 0000000259657475 ; 0000000337018119 ; 0000000214673105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3056252171/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3056252171?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38762501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2471803$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiong, Richen</creatorcontrib><creatorcontrib>Brantly, Samuel L.</creatorcontrib><creatorcontrib>Su, Kaixiang</creatorcontrib><creatorcontrib>Nie, Jacob H.</creatorcontrib><creatorcontrib>Zhang, Zihan</creatorcontrib><creatorcontrib>Banerjee, Rounak</creatorcontrib><creatorcontrib>Ruddick, Hayley</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Tongay, Seth Ariel</creatorcontrib><creatorcontrib>Xu, Cenke</creatorcontrib><creatorcontrib>Jin, Chenhao</creatorcontrib><creatorcontrib>Arizona State Univ., Tempe, AZ (United States)</creatorcontrib><title>Tunable exciton valley-pseudospin orders in moiré superlattices</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Excitons in two-dimensional (2D) semiconductors have offered an attractive platform for optoelectronic and valleytronic devices. Further realizations of correlated phases of excitons promise device concepts not possible in the single particle picture. Here we report tunable exciton “spin” orders in WSe 2 /WS 2 moiré superlattices. We find evidence of an in-plane ( xy ) order of exciton “spin”—here, valley pseudospin—around exciton filling v ex  = 1, which strongly suppresses the out-of-plane “spin” polarization. Upon increasing v ex or applying a small magnetic field of ~10 mT, it transitions into an out-of-plane ferromagnetic (FM -z ) spin order that spontaneously enhances the “spin” polarization, i.e., the circular helicity of emission light is higher than the excitation. The phase diagram is qualitatively captured by a spin-1/2 Bose–Hubbard model and is distinct from the fermion case. Our study paves the way for engineering exotic phases of matter from correlated spinor bosons, opening the door to a host of unconventional quantum devices. Control of correlated excitonic states is a key goal of modern optoelectronic physics. Here, the authors demonstrate filling- and field-tunable exciton valley-pseudospin orders in a moiré heterostructure.</description><subject>140/125</subject><subject>639/766/119/2793</subject><subject>639/766/119/2795</subject><subject>639/766/119/999</subject><subject>639/925/357/1018</subject><subject>Bosons</subject><subject>Correlation</subject><subject>Electrons</subject><subject>Energy</subject><subject>Excitons</subject><subject>Fermions</subject><subject>Ferromagnetism</subject><subject>Helicity</subject><subject>Heterostructures</subject><subject>Humanities and Social Sciences</subject><subject>Light</subject><subject>Low dimensional semiconductors</subject><subject>Magnetic fields</subject><subject>multidisciplinary</subject><subject>Optoelectronic devices</subject><subject>Phase diagrams</subject><subject>Polarization</subject><subject>Polarization (spin alignment)</subject><subject>Science</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Spectrum analysis</subject><subject>Superlattices</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAQxyMEolXpC3BAEVx6CXj8mZwAVXxUqsRl79bEmWyzytqLnVRt34jn6IvhbkppOeDLWJ7f_Gc8-hfFa2DvgYn6Q5IgtakYl5WsDVfVzbPikDMJFRgunj-6HxTHKW1YPqKBWsqXxYGojeaKwWHxaTV7bEcq6coNU_DlJY4jXVe7RHMX0m7wZYgdxVTm2zYM8fZXmeYdxRGnaXCUXhUvehwTHd_Ho2L19cvq9Ht1_uPb2enn88opaKbKoWgNMsOMVCQ061H3wIEawaSWTHWgW8iRYdeoHkXXS9YYA7phCjiKo-Jske0CbuwuDluM1zbgYPcPIa4txjzQSFYSB-xQCuOcNCiaulYut2sVurpDnbU-Llq7ud1S58hPEccnok8zfriw63BpAYBxBSYrvF0UQpoGm_LmyF244D25yXJpoGYiQyf3bWL4OVOa7HZIjsYRPYU5WcGU1loafYe--wfdhDn6vM89xRUHA5niC-ViSClS_zAyMHtnCruYwmZT2L0p7E0uevP4sw8lfyyQAbEAKaf8muLf3v-R_Q0V7cI2</recordid><startdate>20240518</startdate><enddate>20240518</enddate><creator>Xiong, Richen</creator><creator>Brantly, Samuel L.</creator><creator>Su, Kaixiang</creator><creator>Nie, Jacob H.</creator><creator>Zhang, Zihan</creator><creator>Banerjee, Rounak</creator><creator>Ruddick, Hayley</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Tongay, Seth Ariel</creator><creator>Xu, Cenke</creator><creator>Jin, Chenhao</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5965-7475</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-9921-8493</orcidid><orcidid>https://orcid.org/0000-0001-8294-984X</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/000000018294984X</orcidid><orcidid>https://orcid.org/0000000299218493</orcidid><orcidid>https://orcid.org/0000000259657475</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000214673105</orcidid></search><sort><creationdate>20240518</creationdate><title>Tunable exciton valley-pseudospin orders in moiré superlattices</title><author>Xiong, Richen ; Brantly, Samuel L. ; Su, Kaixiang ; Nie, Jacob H. ; Zhang, Zihan ; Banerjee, Rounak ; Ruddick, Hayley ; Watanabe, Kenji ; Taniguchi, Takashi ; Tongay, Seth Ariel ; Xu, Cenke ; Jin, Chenhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-ca3b7a070745e360fa6f121e93046405d16b14050ad95fa3df409771690512a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>140/125</topic><topic>639/766/119/2793</topic><topic>639/766/119/2795</topic><topic>639/766/119/999</topic><topic>639/925/357/1018</topic><topic>Bosons</topic><topic>Correlation</topic><topic>Electrons</topic><topic>Energy</topic><topic>Excitons</topic><topic>Fermions</topic><topic>Ferromagnetism</topic><topic>Helicity</topic><topic>Heterostructures</topic><topic>Humanities and Social Sciences</topic><topic>Light</topic><topic>Low dimensional semiconductors</topic><topic>Magnetic fields</topic><topic>multidisciplinary</topic><topic>Optoelectronic devices</topic><topic>Phase diagrams</topic><topic>Polarization</topic><topic>Polarization (spin alignment)</topic><topic>Science</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Spectrum analysis</topic><topic>Superlattices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Richen</creatorcontrib><creatorcontrib>Brantly, Samuel L.</creatorcontrib><creatorcontrib>Su, Kaixiang</creatorcontrib><creatorcontrib>Nie, Jacob H.</creatorcontrib><creatorcontrib>Zhang, Zihan</creatorcontrib><creatorcontrib>Banerjee, Rounak</creatorcontrib><creatorcontrib>Ruddick, Hayley</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Tongay, Seth Ariel</creatorcontrib><creatorcontrib>Xu, Cenke</creatorcontrib><creatorcontrib>Jin, Chenhao</creatorcontrib><creatorcontrib>Arizona State Univ., Tempe, AZ (United States)</creatorcontrib><collection>Springer Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Richen</au><au>Brantly, Samuel L.</au><au>Su, Kaixiang</au><au>Nie, Jacob H.</au><au>Zhang, Zihan</au><au>Banerjee, Rounak</au><au>Ruddick, Hayley</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Tongay, Seth Ariel</au><au>Xu, Cenke</au><au>Jin, Chenhao</au><aucorp>Arizona State Univ., Tempe, AZ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable exciton valley-pseudospin orders in moiré superlattices</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-05-18</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>4254</spage><epage>4254</epage><pages>4254-4254</pages><artnum>4254</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Excitons in two-dimensional (2D) semiconductors have offered an attractive platform for optoelectronic and valleytronic devices. Further realizations of correlated phases of excitons promise device concepts not possible in the single particle picture. Here we report tunable exciton “spin” orders in WSe 2 /WS 2 moiré superlattices. We find evidence of an in-plane ( xy ) order of exciton “spin”—here, valley pseudospin—around exciton filling v ex  = 1, which strongly suppresses the out-of-plane “spin” polarization. Upon increasing v ex or applying a small magnetic field of ~10 mT, it transitions into an out-of-plane ferromagnetic (FM -z ) spin order that spontaneously enhances the “spin” polarization, i.e., the circular helicity of emission light is higher than the excitation. The phase diagram is qualitatively captured by a spin-1/2 Bose–Hubbard model and is distinct from the fermion case. Our study paves the way for engineering exotic phases of matter from correlated spinor bosons, opening the door to a host of unconventional quantum devices. Control of correlated excitonic states is a key goal of modern optoelectronic physics. Here, the authors demonstrate filling- and field-tunable exciton valley-pseudospin orders in a moiré heterostructure.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38762501</pmid><doi>10.1038/s41467-024-48725-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5965-7475</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-9921-8493</orcidid><orcidid>https://orcid.org/0000-0001-8294-984X</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/000000018294984X</orcidid><orcidid>https://orcid.org/0000000299218493</orcidid><orcidid>https://orcid.org/0000000259657475</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000214673105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-05, Vol.15 (1), p.4254-4254, Article 4254
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4e21ada437cc47a39885ca6fb5ac8da6
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 140/125
639/766/119/2793
639/766/119/2795
639/766/119/999
639/925/357/1018
Bosons
Correlation
Electrons
Energy
Excitons
Fermions
Ferromagnetism
Helicity
Heterostructures
Humanities and Social Sciences
Light
Low dimensional semiconductors
Magnetic fields
multidisciplinary
Optoelectronic devices
Phase diagrams
Polarization
Polarization (spin alignment)
Science
Science & Technology - Other Topics
Science (multidisciplinary)
Spectrum analysis
Superlattices
title Tunable exciton valley-pseudospin orders in moiré superlattices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A14%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20exciton%20valley-pseudospin%20orders%20in%20moir%C3%A9%20superlattices&rft.jtitle=Nature%20communications&rft.au=Xiong,%20Richen&rft.aucorp=Arizona%20State%20Univ.,%20Tempe,%20AZ%20(United%20States)&rft.date=2024-05-18&rft.volume=15&rft.issue=1&rft.spage=4254&rft.epage=4254&rft.pages=4254-4254&rft.artnum=4254&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-48725-z&rft_dat=%3Cproquest_doaj_%3E3056252171%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c519t-ca3b7a070745e360fa6f121e93046405d16b14050ad95fa3df409771690512a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3056252171&rft_id=info:pmid/38762501&rfr_iscdi=true