Loading…
Efficient Segmentation of a Breast in B-Mode Ultrasound Tomography Using Three-Dimensional GrabCut (GC3D)
As an emerging modality for whole breast imaging, ultrasound tomography (UST), has been adopted for diagnostic purposes. Efficient segmentation of an entire breast in UST images plays an important role in quantitative tissue analysis and cancer diagnosis, while major existing methods suffer from con...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2017-08, Vol.17 (8), p.1827 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As an emerging modality for whole breast imaging, ultrasound tomography (UST), has been adopted for diagnostic purposes. Efficient segmentation of an entire breast in UST images plays an important role in quantitative tissue analysis and cancer diagnosis, while major existing methods suffer from considerable time consumption and intensive user interaction. This paper explores three-dimensional GrabCut (GC3D) for breast isolation in thirty reflection (B-mode) UST volumetric images. The algorithm can be conveniently initialized by localizing points to form a polygon, which covers the potential breast region. Moreover, two other variations of GrabCut and an active contour method were compared. Algorithm performance was evaluated from volume overlap ratios ( T O , target overlap; M O , mean overlap; F P , false positive; F N , false negative) and time consumption. Experimental results indicate that GC3D considerably reduced the work load and achieved good performance ( T O = 0.84; M O = 0.91; F P = 0.006; F N = 0.16) within an average of 1.2 min per volume. Furthermore, GC3D is not only user friendly, but also robust to various inputs, suggesting its great potential to facilitate clinical applications during whole-breast UST imaging. In the near future, the implemented GC3D can be easily automated to tackle B-mode UST volumetric images acquired from the updated imaging system. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s17081827 |