Loading…
Workshop Safety Helmet Wearing Detection Model Based on SCM-YOLO
In order to overcome the problems of object detection in complex scenes based on the YOLOv4-tiny algorithm, such as insufficient feature extraction, low accuracy, and low recall rate, an improved YOLOv4-tiny safety helmet-wearing detection algorithm SCM-YOLO is proposed. Firstly, the Spatial Pyramid...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2022-09, Vol.22 (17), p.6702 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c415t-b9a6b17967361b2c0b32645f3dcdc5f1a52e3d94f22fefe5396fbbbf498181fe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c415t-b9a6b17967361b2c0b32645f3dcdc5f1a52e3d94f22fefe5396fbbbf498181fe3 |
container_end_page | |
container_issue | 17 |
container_start_page | 6702 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 22 |
creator | Zhang, Bin Sun, Chuan-Feng Fang, Shu-Qi Zhao, Ye-Hai Su, Song |
description | In order to overcome the problems of object detection in complex scenes based on the YOLOv4-tiny algorithm, such as insufficient feature extraction, low accuracy, and low recall rate, an improved YOLOv4-tiny safety helmet-wearing detection algorithm SCM-YOLO is proposed. Firstly, the Spatial Pyramid Pooling (SPP) structure is added after the backbone network of the YOLOv4-tiny model to improve its adaptability of different scale features and increase its effective features extraction capability. Secondly, Convolutional Block Attention Module (CBAM), Mish activation function, K-Means++ clustering algorithm, label smoothing, and Mosaic data enhancement are introduced to improve the detection accuracy of small objects while ensuring the detection speed. After a large number of experiments, the proposed SCM-YOLO algorithm achieves a mAP of 93.19%, which is 4.76% higher than the YOLOv4-tiny algorithm. Its inference speed reaches 22.9FPS (GeForce GTX 1050Ti), which meets the needs of the real-time and accurate detection of safety helmets in complex scenes. |
doi_str_mv | 10.3390/s22176702 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4e533d67829b4c2ebce7fe71a3dcc229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746531753</galeid><doaj_id>oai_doaj_org_article_4e533d67829b4c2ebce7fe71a3dcc229</doaj_id><sourcerecordid>A746531753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-b9a6b17967361b2c0b32645f3dcdc5f1a52e3d94f22fefe5396fbbbf498181fe3</originalsourceid><addsrcrecordid>eNpdkk1vFDEMhiMEomXhwD8YiQscpiROJpm5IMry0Upb7aGgilOUZJxtlpnJNplF6r8nZauKohyc2K8fx5YJec3oCecdfZ8BmJKKwhNyzASIugWgT_-5H5EXOW8pBc55-5wccUlbxiQ7Jh-vYvqVr-OuujQe59vqDIcR5-oKTQrTpvqMM7o5xKm6iD0O1SeTsa_K83J5Uf9cr9YvyTNvhoyv7u2C_Pj65fvyrF6tv50vT1e1E6yZa9sZaZnqpOKSWXDUcpCi8bx3vWs8Mw0g7zvhATx6bHgnvbXWi65lLfPIF-T8wO2j2epdCqNJtzqaoP86Ytpok-bgBtSipPNeqhY6Kxygdag8KmZKMQfQFdaHA2u3tyP2Dqc5meER9HFkCtd6E3_rTkjKhSyAt_eAFG_2mGc9huxwGMyEcZ81KAZtwwGaIn3zn3Qb92kqo7pTsUaWobCiOjmoNqY0ECYfS11XTo9jcHFCH4r_VAnZcKZKewvy7pDgUsw5oX_4PaP6bin0w1LwP79DpbI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711561791</pqid></control><display><type>article</type><title>Workshop Safety Helmet Wearing Detection Model Based on SCM-YOLO</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Zhang, Bin ; Sun, Chuan-Feng ; Fang, Shu-Qi ; Zhao, Ye-Hai ; Su, Song</creator><creatorcontrib>Zhang, Bin ; Sun, Chuan-Feng ; Fang, Shu-Qi ; Zhao, Ye-Hai ; Su, Song</creatorcontrib><description>In order to overcome the problems of object detection in complex scenes based on the YOLOv4-tiny algorithm, such as insufficient feature extraction, low accuracy, and low recall rate, an improved YOLOv4-tiny safety helmet-wearing detection algorithm SCM-YOLO is proposed. Firstly, the Spatial Pyramid Pooling (SPP) structure is added after the backbone network of the YOLOv4-tiny model to improve its adaptability of different scale features and increase its effective features extraction capability. Secondly, Convolutional Block Attention Module (CBAM), Mish activation function, K-Means++ clustering algorithm, label smoothing, and Mosaic data enhancement are introduced to improve the detection accuracy of small objects while ensuring the detection speed. After a large number of experiments, the proposed SCM-YOLO algorithm achieves a mAP of 93.19%, which is 4.76% higher than the YOLOv4-tiny algorithm. Its inference speed reaches 22.9FPS (GeForce GTX 1050Ti), which meets the needs of the real-time and accurate detection of safety helmets in complex scenes.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22176702</identifier><identifier>PMID: 36081161</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Clustering ; Conferences, meetings and seminars ; convolutional block attention module ; Data smoothing ; Deep learning ; K-Means++ clustering algorithm ; label smoothing ; Safety and security measures ; safety helmet wearing detection ; Semantics ; spatial pyramid pooling structure ; Telecommunication systems ; YOLOv4-tiny</subject><ispartof>Sensors (Basel, Switzerland), 2022-09, Vol.22 (17), p.6702</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-b9a6b17967361b2c0b32645f3dcdc5f1a52e3d94f22fefe5396fbbbf498181fe3</citedby><cites>FETCH-LOGICAL-c415t-b9a6b17967361b2c0b32645f3dcdc5f1a52e3d94f22fefe5396fbbbf498181fe3</cites><orcidid>0000-0001-8200-5259 ; 0000-0002-3699-855X ; 0000-0002-8479-9301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2711561791/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2711561791?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids></links><search><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Sun, Chuan-Feng</creatorcontrib><creatorcontrib>Fang, Shu-Qi</creatorcontrib><creatorcontrib>Zhao, Ye-Hai</creatorcontrib><creatorcontrib>Su, Song</creatorcontrib><title>Workshop Safety Helmet Wearing Detection Model Based on SCM-YOLO</title><title>Sensors (Basel, Switzerland)</title><description>In order to overcome the problems of object detection in complex scenes based on the YOLOv4-tiny algorithm, such as insufficient feature extraction, low accuracy, and low recall rate, an improved YOLOv4-tiny safety helmet-wearing detection algorithm SCM-YOLO is proposed. Firstly, the Spatial Pyramid Pooling (SPP) structure is added after the backbone network of the YOLOv4-tiny model to improve its adaptability of different scale features and increase its effective features extraction capability. Secondly, Convolutional Block Attention Module (CBAM), Mish activation function, K-Means++ clustering algorithm, label smoothing, and Mosaic data enhancement are introduced to improve the detection accuracy of small objects while ensuring the detection speed. After a large number of experiments, the proposed SCM-YOLO algorithm achieves a mAP of 93.19%, which is 4.76% higher than the YOLOv4-tiny algorithm. Its inference speed reaches 22.9FPS (GeForce GTX 1050Ti), which meets the needs of the real-time and accurate detection of safety helmets in complex scenes.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Clustering</subject><subject>Conferences, meetings and seminars</subject><subject>convolutional block attention module</subject><subject>Data smoothing</subject><subject>Deep learning</subject><subject>K-Means++ clustering algorithm</subject><subject>label smoothing</subject><subject>Safety and security measures</subject><subject>safety helmet wearing detection</subject><subject>Semantics</subject><subject>spatial pyramid pooling structure</subject><subject>Telecommunication systems</subject><subject>YOLOv4-tiny</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vFDEMhiMEomXhwD8YiQscpiROJpm5IMry0Upb7aGgilOUZJxtlpnJNplF6r8nZauKohyc2K8fx5YJec3oCecdfZ8BmJKKwhNyzASIugWgT_-5H5EXOW8pBc55-5wccUlbxiQ7Jh-vYvqVr-OuujQe59vqDIcR5-oKTQrTpvqMM7o5xKm6iD0O1SeTsa_K83J5Uf9cr9YvyTNvhoyv7u2C_Pj65fvyrF6tv50vT1e1E6yZa9sZaZnqpOKSWXDUcpCi8bx3vWs8Mw0g7zvhATx6bHgnvbXWi65lLfPIF-T8wO2j2epdCqNJtzqaoP86Ytpok-bgBtSipPNeqhY6Kxygdag8KmZKMQfQFdaHA2u3tyP2Dqc5meER9HFkCtd6E3_rTkjKhSyAt_eAFG_2mGc9huxwGMyEcZ81KAZtwwGaIn3zn3Qb92kqo7pTsUaWobCiOjmoNqY0ECYfS11XTo9jcHFCH4r_VAnZcKZKewvy7pDgUsw5oX_4PaP6bin0w1LwP79DpbI</recordid><startdate>20220905</startdate><enddate>20220905</enddate><creator>Zhang, Bin</creator><creator>Sun, Chuan-Feng</creator><creator>Fang, Shu-Qi</creator><creator>Zhao, Ye-Hai</creator><creator>Su, Song</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8200-5259</orcidid><orcidid>https://orcid.org/0000-0002-3699-855X</orcidid><orcidid>https://orcid.org/0000-0002-8479-9301</orcidid></search><sort><creationdate>20220905</creationdate><title>Workshop Safety Helmet Wearing Detection Model Based on SCM-YOLO</title><author>Zhang, Bin ; Sun, Chuan-Feng ; Fang, Shu-Qi ; Zhao, Ye-Hai ; Su, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-b9a6b17967361b2c0b32645f3dcdc5f1a52e3d94f22fefe5396fbbbf498181fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Clustering</topic><topic>Conferences, meetings and seminars</topic><topic>convolutional block attention module</topic><topic>Data smoothing</topic><topic>Deep learning</topic><topic>K-Means++ clustering algorithm</topic><topic>label smoothing</topic><topic>Safety and security measures</topic><topic>safety helmet wearing detection</topic><topic>Semantics</topic><topic>spatial pyramid pooling structure</topic><topic>Telecommunication systems</topic><topic>YOLOv4-tiny</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Sun, Chuan-Feng</creatorcontrib><creatorcontrib>Fang, Shu-Qi</creatorcontrib><creatorcontrib>Zhao, Ye-Hai</creatorcontrib><creatorcontrib>Su, Song</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bin</au><au>Sun, Chuan-Feng</au><au>Fang, Shu-Qi</au><au>Zhao, Ye-Hai</au><au>Su, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Workshop Safety Helmet Wearing Detection Model Based on SCM-YOLO</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2022-09-05</date><risdate>2022</risdate><volume>22</volume><issue>17</issue><spage>6702</spage><pages>6702-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>In order to overcome the problems of object detection in complex scenes based on the YOLOv4-tiny algorithm, such as insufficient feature extraction, low accuracy, and low recall rate, an improved YOLOv4-tiny safety helmet-wearing detection algorithm SCM-YOLO is proposed. Firstly, the Spatial Pyramid Pooling (SPP) structure is added after the backbone network of the YOLOv4-tiny model to improve its adaptability of different scale features and increase its effective features extraction capability. Secondly, Convolutional Block Attention Module (CBAM), Mish activation function, K-Means++ clustering algorithm, label smoothing, and Mosaic data enhancement are introduced to improve the detection accuracy of small objects while ensuring the detection speed. After a large number of experiments, the proposed SCM-YOLO algorithm achieves a mAP of 93.19%, which is 4.76% higher than the YOLOv4-tiny algorithm. Its inference speed reaches 22.9FPS (GeForce GTX 1050Ti), which meets the needs of the real-time and accurate detection of safety helmets in complex scenes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36081161</pmid><doi>10.3390/s22176702</doi><orcidid>https://orcid.org/0000-0001-8200-5259</orcidid><orcidid>https://orcid.org/0000-0002-3699-855X</orcidid><orcidid>https://orcid.org/0000-0002-8479-9301</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2022-09, Vol.22 (17), p.6702 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4e533d67829b4c2ebce7fe71a3dcc229 |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest) |
subjects | Accuracy Algorithms Clustering Conferences, meetings and seminars convolutional block attention module Data smoothing Deep learning K-Means++ clustering algorithm label smoothing Safety and security measures safety helmet wearing detection Semantics spatial pyramid pooling structure Telecommunication systems YOLOv4-tiny |
title | Workshop Safety Helmet Wearing Detection Model Based on SCM-YOLO |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A03%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Workshop%20Safety%20Helmet%20Wearing%20Detection%20Model%20Based%20on%20SCM-YOLO&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Zhang,%20Bin&rft.date=2022-09-05&rft.volume=22&rft.issue=17&rft.spage=6702&rft.pages=6702-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22176702&rft_dat=%3Cgale_doaj_%3EA746531753%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-b9a6b17967361b2c0b32645f3dcdc5f1a52e3d94f22fefe5396fbbbf498181fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2711561791&rft_id=info:pmid/36081161&rft_galeid=A746531753&rfr_iscdi=true |