Loading…
Route Redundancy-Based Network Topology Measure of Metro Networks
The metro system plays a very important role in the urban multimodal transportation system, yet it is susceptible to accidents. A well-designed metro system needs to provide alternative routes to travellers both in the disruptive events and the normal operating conditions for providing rerouting opp...
Saved in:
Published in: | Journal of advanced transportation 2019, Vol.2019 (2019), p.1-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The metro system plays a very important role in the urban multimodal transportation system, yet it is susceptible to accidents. A well-designed metro system needs to provide alternative routes to travellers both in the disruptive events and the normal operating conditions for providing rerouting opportunities and balancing crowded lines. This paper provides a new dimension of assessing metro network performance—travellers’ route redundancy (or route diversity), which is defined as the number of behaviourally effective routes between each origin-destination (O-D) pair in the network. The route redundancy of metro network is evaluated by statistical indicators of the distribution of the O-D-level number of effective routes. Compared with the existing connectivity and accessibility measures of topology network performance, route redundancy is also based on the topology network, but it takes the travellers’ route choice into consideration. Specifically, the effective routes between each O-D pair would provide disaggregated information from the travellers’ perspective. Case studies in four metropolises in the world, i.e., Shanghai, Beijing, London, and Tokyo, are conducted to examine the predisaster preparedness of the four metro networks explicitly from the perspective of route redundancy. The results indicate that the London metro network has the best route redundancy performance in terms of the statistical indicators of the distribution of the O-D level number of effective routes. Furthermore, the results of route redundancy are compared with typical measures of topology network performance in terms of measuring connectivity and accessibility of metro networks. Their differences are attributed to the fact that the route redundancy measure considers the travellers’ O-D-level route choice beyond the pure network topology and the shortest path considerations of the existing measures. The route redundancy proposed in this paper could assist in evaluating the predisaster preparedness of current or planning metro networks from O-D level to network level. |
---|---|
ISSN: | 0197-6729 2042-3195 |
DOI: | 10.1155/2019/4576961 |