Loading…
Accelerating cross-validation with total variation and its application to super-resolution imaging
We develop an approximation formula for the cross-validation error (CVE) of a sparse linear regression penalized by ℓ1-norm and total variation terms, which is based on a perturbative expansion utilizing the largeness of both the data dimensionality and the model. The developed formula allows us to...
Saved in:
Published in: | PloS one 2017-12, Vol.12 (12), p.e0188012-e0188012 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c750t-b947891fdd61d2848bbb4160ada61970f8b76f26fc565c112dc9fc0433dd870d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c750t-b947891fdd61d2848bbb4160ada61970f8b76f26fc565c112dc9fc0433dd870d3 |
container_end_page | e0188012 |
container_issue | 12 |
container_start_page | e0188012 |
container_title | PloS one |
container_volume | 12 |
creator | Obuchi, Tomoyuki Ikeda, Shiro Akiyama, Kazunori Kabashima, Yoshiyuki |
description | We develop an approximation formula for the cross-validation error (CVE) of a sparse linear regression penalized by ℓ1-norm and total variation terms, which is based on a perturbative expansion utilizing the largeness of both the data dimensionality and the model. The developed formula allows us to reduce the necessary computational cost of the CVE evaluation significantly. The practicality of the formula is tested through application to simulated black-hole image reconstruction on the event-horizon scale with super resolution. The results demonstrate that our approximation reproduces the CVE values obtained via literally conducted cross-validation with reasonably good precision. |
doi_str_mv | 10.1371/journal.pone.0188012 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4e707dde93d046ebbd7b82a20695a743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A517829152</galeid><doaj_id>oai_doaj_org_article_4e707dde93d046ebbd7b82a20695a743</doaj_id><sourcerecordid>A517829152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c750t-b947891fdd61d2848bbb4160ada61970f8b76f26fc565c112dc9fc0433dd870d3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7jr6D0QKgqwXHZO0-ejNwrCsOrCw4NdtSJO0kyHT1CQd9d-bmc4uU_BCetHy9jlP29M3y15DsIQlhR-2bvS9sMvB9XoJIGMAoifZJaxLVBAEyqdn1xfZixC2AOCSEfI8u0A1ggRBfJk1Kym11V5E03e59C6EYi-sUSlwff7LxE0eXRQ23wtvplD0Kjcx5GIYrJFTFl0exkH7wuvg7HjMzE50yfoye9YKG_Sr03mRff94--3mc3F3_2l9s7orJMUgFk1dUVbDVikCFWIVa5qmggQIJQisKWhZQ0mLSCsxwRJCpGTdSlCVpVKMAlUusvXkVU5s-eDT4_0f7oThx8D5jgsfjbSaV5oCqpSuSwUqoptG0YYhgQCpsaBJuciuJ9cwNjutpO6jF3Ymnd_pzYZ3bs8xRYASlARXJ4F3P0cdIt-ZkDZtRa_dGHj6IgxgzUqW0LcT2on0aqZvXTLKA85XGFKGaogPwuU_qHQovTMydaA1KZ8NvJ8NJCbq37ETYwh8_fXL_7P3P-bsuzN2o4WNm4dfHuZgNYHHVnndPq4PAn6oMD9VmB8qzE8VTmNvzlf_OPTQ2fIvOYPvHQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975019838</pqid></control><display><type>article</type><title>Accelerating cross-validation with total variation and its application to super-resolution imaging</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Obuchi, Tomoyuki ; Ikeda, Shiro ; Akiyama, Kazunori ; Kabashima, Yoshiyuki</creator><contributor>Wang, Yuanquan</contributor><creatorcontrib>Obuchi, Tomoyuki ; Ikeda, Shiro ; Akiyama, Kazunori ; Kabashima, Yoshiyuki ; Wang, Yuanquan</creatorcontrib><description>We develop an approximation formula for the cross-validation error (CVE) of a sparse linear regression penalized by ℓ1-norm and total variation terms, which is based on a perturbative expansion utilizing the largeness of both the data dimensionality and the model. The developed formula allows us to reduce the necessary computational cost of the CVE evaluation significantly. The practicality of the formula is tested through application to simulated black-hole image reconstruction on the event-horizon scale with super resolution. The results demonstrate that our approximation reproduces the CVE values obtained via literally conducted cross-validation with reasonably good precision.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0188012</identifier><identifier>PMID: 29216215</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Computer and Information Sciences ; Physical Sciences ; Resampling (Statistics) ; Research and Analysis Methods</subject><ispartof>PloS one, 2017-12, Vol.12 (12), p.e0188012-e0188012</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Obuchi et al 2017 Obuchi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c750t-b947891fdd61d2848bbb4160ada61970f8b76f26fc565c112dc9fc0433dd870d3</citedby><cites>FETCH-LOGICAL-c750t-b947891fdd61d2848bbb4160ada61970f8b76f26fc565c112dc9fc0433dd870d3</cites><orcidid>0000-0003-1216-489X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5720762/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5720762/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29216215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wang, Yuanquan</contributor><creatorcontrib>Obuchi, Tomoyuki</creatorcontrib><creatorcontrib>Ikeda, Shiro</creatorcontrib><creatorcontrib>Akiyama, Kazunori</creatorcontrib><creatorcontrib>Kabashima, Yoshiyuki</creatorcontrib><title>Accelerating cross-validation with total variation and its application to super-resolution imaging</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We develop an approximation formula for the cross-validation error (CVE) of a sparse linear regression penalized by ℓ1-norm and total variation terms, which is based on a perturbative expansion utilizing the largeness of both the data dimensionality and the model. The developed formula allows us to reduce the necessary computational cost of the CVE evaluation significantly. The practicality of the formula is tested through application to simulated black-hole image reconstruction on the event-horizon scale with super resolution. The results demonstrate that our approximation reproduces the CVE values obtained via literally conducted cross-validation with reasonably good precision.</description><subject>Computer and Information Sciences</subject><subject>Physical Sciences</subject><subject>Resampling (Statistics)</subject><subject>Research and Analysis Methods</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7jr6D0QKgqwXHZO0-ejNwrCsOrCw4NdtSJO0kyHT1CQd9d-bmc4uU_BCetHy9jlP29M3y15DsIQlhR-2bvS9sMvB9XoJIGMAoifZJaxLVBAEyqdn1xfZixC2AOCSEfI8u0A1ggRBfJk1Kym11V5E03e59C6EYi-sUSlwff7LxE0eXRQ23wtvplD0Kjcx5GIYrJFTFl0exkH7wuvg7HjMzE50yfoye9YKG_Sr03mRff94--3mc3F3_2l9s7orJMUgFk1dUVbDVikCFWIVa5qmggQIJQisKWhZQ0mLSCsxwRJCpGTdSlCVpVKMAlUusvXkVU5s-eDT4_0f7oThx8D5jgsfjbSaV5oCqpSuSwUqoptG0YYhgQCpsaBJuciuJ9cwNjutpO6jF3Ymnd_pzYZ3bs8xRYASlARXJ4F3P0cdIt-ZkDZtRa_dGHj6IgxgzUqW0LcT2on0aqZvXTLKA85XGFKGaogPwuU_qHQovTMydaA1KZ8NvJ8NJCbq37ETYwh8_fXL_7P3P-bsuzN2o4WNm4dfHuZgNYHHVnndPq4PAn6oMD9VmB8qzE8VTmNvzlf_OPTQ2fIvOYPvHQ</recordid><startdate>20171207</startdate><enddate>20171207</enddate><creator>Obuchi, Tomoyuki</creator><creator>Ikeda, Shiro</creator><creator>Akiyama, Kazunori</creator><creator>Kabashima, Yoshiyuki</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1216-489X</orcidid></search><sort><creationdate>20171207</creationdate><title>Accelerating cross-validation with total variation and its application to super-resolution imaging</title><author>Obuchi, Tomoyuki ; Ikeda, Shiro ; Akiyama, Kazunori ; Kabashima, Yoshiyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c750t-b947891fdd61d2848bbb4160ada61970f8b76f26fc565c112dc9fc0433dd870d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer and Information Sciences</topic><topic>Physical Sciences</topic><topic>Resampling (Statistics)</topic><topic>Research and Analysis Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obuchi, Tomoyuki</creatorcontrib><creatorcontrib>Ikeda, Shiro</creatorcontrib><creatorcontrib>Akiyama, Kazunori</creatorcontrib><creatorcontrib>Kabashima, Yoshiyuki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obuchi, Tomoyuki</au><au>Ikeda, Shiro</au><au>Akiyama, Kazunori</au><au>Kabashima, Yoshiyuki</au><au>Wang, Yuanquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating cross-validation with total variation and its application to super-resolution imaging</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-12-07</date><risdate>2017</risdate><volume>12</volume><issue>12</issue><spage>e0188012</spage><epage>e0188012</epage><pages>e0188012-e0188012</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We develop an approximation formula for the cross-validation error (CVE) of a sparse linear regression penalized by ℓ1-norm and total variation terms, which is based on a perturbative expansion utilizing the largeness of both the data dimensionality and the model. The developed formula allows us to reduce the necessary computational cost of the CVE evaluation significantly. The practicality of the formula is tested through application to simulated black-hole image reconstruction on the event-horizon scale with super resolution. The results demonstrate that our approximation reproduces the CVE values obtained via literally conducted cross-validation with reasonably good precision.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29216215</pmid><doi>10.1371/journal.pone.0188012</doi><tpages>e0188012</tpages><orcidid>https://orcid.org/0000-0003-1216-489X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-12, Vol.12 (12), p.e0188012-e0188012 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4e707dde93d046ebbd7b82a20695a743 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Computer and Information Sciences Physical Sciences Resampling (Statistics) Research and Analysis Methods |
title | Accelerating cross-validation with total variation and its application to super-resolution imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20cross-validation%20with%20total%20variation%20and%20its%20application%20to%20super-resolution%20imaging&rft.jtitle=PloS%20one&rft.au=Obuchi,%20Tomoyuki&rft.date=2017-12-07&rft.volume=12&rft.issue=12&rft.spage=e0188012&rft.epage=e0188012&rft.pages=e0188012-e0188012&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0188012&rft_dat=%3Cgale_doaj_%3EA517829152%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c750t-b947891fdd61d2848bbb4160ada61970f8b76f26fc565c112dc9fc0433dd870d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1975019838&rft_id=info:pmid/29216215&rft_galeid=A517829152&rfr_iscdi=true |