Loading…
Magnetic field-induced vortex triplet and vortex lattice in a liquid crystal cell
Vortices are particle-type solutions with topological charges that can steer the dynamics in various physical systems. By the application of electromagnetic fields onto a homeotropic nematic liquid crystal cell, we are able to induce a vortex triplet that remains stable and trapped at a given locati...
Saved in:
Published in: | Physical review research 2020-11, Vol.2 (4), p.042026, Article 042026 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Vortices are particle-type solutions with topological charges that can steer the dynamics in various physical systems. By the application of electromagnetic fields onto a homeotropic nematic liquid crystal cell, we are able to induce a vortex triplet that remains stable and trapped at a given location. For a low frequency of the driven voltage, we observe that the vortex triplet is unstable and gives rise to the appearance of a topological lattice. Based on an amplitude equation valid close to reorientational instability, it allows us to reveal the origin of the vortex triplet and vortex lattice. Numerical simulations show a quite fair agreement with theoretical findings and experimental observations. |
---|---|
ISSN: | 2643-1564 2643-1564 |
DOI: | 10.1103/PhysRevResearch.2.042026 |