Loading…

Dynamic Behaviors in Coupled Neuron System with the Excitatory and Inhibitory Autapse under Electromagnetic Induction

The induced current produced by electromagnetic induction can adjust the membrane potential of neuron through the feedback of a magnetic flux-controlled memristor. We adopt the numerical simulation method with the aim of investigating the synchronous behavior in the neuronal system that is coupled b...

Full description

Saved in:
Bibliographic Details
Published in:Complexity (New York, N.Y.) N.Y.), 2018-01, Vol.2018 (2018), p.1-13
Main Authors: Pei, Qiming, Ge, Mengyan, Shen, Jian, Kirunda, John Billy, Jia, Ya, Xu, Ying, Lu, Lulu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The induced current produced by electromagnetic induction can adjust the membrane potential of neuron through the feedback of a magnetic flux-controlled memristor. We adopt the numerical simulation method with the aim of investigating the synchronous behavior in the neuronal system that is coupled by chemical and electrical synapses under electromagnetic induction. Within the improved model, the effects of electromagnetic induction on neurons are described with additive memristive current on the membrane variable, and the memristive current is dependent on the variation of magnetic flow. The simulation results show that the two coupling modes play an important role in the synchronization of the system. By increasing the chemical synaptic feedback gain, we observe a transition from mixed oscillatory to periodic state at a critical value. In addition, two Hopf bifurcation points are found with the change of the external stimuli, and the state of neuron discharge is influenced by initial values. Furthermore, there is a domain of coupling strength and feedback gain values, in which the two coupled neuron system is synchronized and longer time lag is not conducive to the system synchronization.
ISSN:1076-2787
1099-0526
DOI:10.1155/2018/3012743