Loading…
Correlated Skin Surface and Tumor Motion Modeling for Treatment Planning in Robotic Radiosurgery
In robotic radiosurgery, motion tracking is crucial for accurate treatment planning of tumor inside thoracic or abdominal cavity. Currently, motion characterization for respiration tracking mainly focuses on markers which are placed on surface of human chest. Nevertheless, limited markers are not ca...
Saved in:
Published in: | Frontiers in neurorobotics 2020-11, Vol.14, p.582385-582385 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-59bc6f37b292cd29ae4374f8ea4fb42b1746095cee90fc76370e789fcbe72b0f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-59bc6f37b292cd29ae4374f8ea4fb42b1746095cee90fc76370e789fcbe72b0f3 |
container_end_page | 582385 |
container_issue | |
container_start_page | 582385 |
container_title | Frontiers in neurorobotics |
container_volume | 14 |
creator | Yu, Shumei Hou, Pengcheng Sun, Rongchuan Kuang, Shaolong Zhang, Fengfeng Zhou, Mingchuan Guo, Jing Sun, Lining |
description | In robotic radiosurgery, motion tracking is crucial for accurate treatment planning of tumor inside thoracic or abdominal cavity. Currently, motion characterization for respiration tracking mainly focuses on markers which are placed on surface of human chest. Nevertheless, limited markers are not capable of expressing the comprehensive motion feature of human chest and abdomen. In this paper, we proposed a method of respiratory motion characterization based on the voxel modeling of thoracoabdominal torso. Point cloud data from depth cameras were used to achieve three-dimensional modeling of the chest and abdomen surface during respiration, and a dimensionality reduction algorithm was proposed to extract respiratory features from the established voxel model. Finally, experimental results including the accuracy of voxel model and correlation coefficient were compared to validate the feasibility of the proposed method, which provides enhanced accuracy of target motion correlation than traditional methods that utilized external markers. |
doi_str_mv | 10.3389/fnbot.2020.582385 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4e89df4001da4ada85f16a57624c3055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4e89df4001da4ada85f16a57624c3055</doaj_id><sourcerecordid>2460072161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-59bc6f37b292cd29ae4374f8ea4fb42b1746095cee90fc76370e789fcbe72b0f3</originalsourceid><addsrcrecordid>eNpdkktvEzEUhUcIREvhB7AbiQ2bBL8fGyQU8ahUBGrD2njs6-AwYxd7Bqn_HiepEGV1r66PPx1fn657idGaUqXfhDTkeU0QQWuuCFX8UXeOhSArTrB6_E9_1j2rdY-QIIKrp90ZpaS1Wp133ze5FBjtDL6_-RlTf7OUYB30Nvl-u0y59J_zHHNqxcMY064PbbYtYOcJ0tx_HW1Kh3G7e52bn-j6a-tjrkvZQbl73j0Jdqzw4r5edN8-vN9uPq2uvny83Ly7Wjkm0bzienAiUDkQTZwn2gKjkgUFloWBkQFLJpDmDkCj4KSgEoFUOrgBJBlQoBfd5Ynrs92b2xInW-5MttEcB7nsjC3N3AiGgdI-MISwt8x6q3jAwnIpCHMUcd5Yb0-s22WYwLv2zmLHB9CHJyn-MLv820ihFDsCXt8DSv61QJ3NFKuDse0K8lINYe1ntFCCNumr_6T7vJTUVnVQISQJFrip8EnlSq61QPhrBiNzyII5ZsEcsmBOWaB_ANfqp-U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460072161</pqid></control><display><type>article</type><title>Correlated Skin Surface and Tumor Motion Modeling for Treatment Planning in Robotic Radiosurgery</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Yu, Shumei ; Hou, Pengcheng ; Sun, Rongchuan ; Kuang, Shaolong ; Zhang, Fengfeng ; Zhou, Mingchuan ; Guo, Jing ; Sun, Lining</creator><creatorcontrib>Yu, Shumei ; Hou, Pengcheng ; Sun, Rongchuan ; Kuang, Shaolong ; Zhang, Fengfeng ; Zhou, Mingchuan ; Guo, Jing ; Sun, Lining</creatorcontrib><description>In robotic radiosurgery, motion tracking is crucial for accurate treatment planning of tumor inside thoracic or abdominal cavity. Currently, motion characterization for respiration tracking mainly focuses on markers which are placed on surface of human chest. Nevertheless, limited markers are not capable of expressing the comprehensive motion feature of human chest and abdomen. In this paper, we proposed a method of respiratory motion characterization based on the voxel modeling of thoracoabdominal torso. Point cloud data from depth cameras were used to achieve three-dimensional modeling of the chest and abdomen surface during respiration, and a dimensionality reduction algorithm was proposed to extract respiratory features from the established voxel model. Finally, experimental results including the accuracy of voxel model and correlation coefficient were compared to validate the feasibility of the proposed method, which provides enhanced accuracy of target motion correlation than traditional methods that utilized external markers.</description><identifier>ISSN: 1662-5218</identifier><identifier>EISSN: 1662-5218</identifier><identifier>DOI: 10.3389/fnbot.2020.582385</identifier><identifier>PMID: 33262698</identifier><language>eng</language><publisher>Lausanne: Frontiers Research Foundation</publisher><subject>Abdomen ; Cameras ; Chest ; correlation model ; Experiments ; Fuzzy logic ; Methods ; Neural networks ; Neuroscience ; Patients ; Principal components analysis ; Radiosurgery ; Respiration ; respiratory motion characterization ; Skin ; surface modeling ; Thorax ; tumor tracking ; Tumors ; voxel model</subject><ispartof>Frontiers in neurorobotics, 2020-11, Vol.14, p.582385-582385</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2020 Yu, Hou, Sun, Kuang, Zhang, Zhou, Guo and Sun. 2020 Yu, Hou, Sun, Kuang, Zhang, Zhou, Guo and Sun</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-59bc6f37b292cd29ae4374f8ea4fb42b1746095cee90fc76370e789fcbe72b0f3</citedby><cites>FETCH-LOGICAL-c470t-59bc6f37b292cd29ae4374f8ea4fb42b1746095cee90fc76370e789fcbe72b0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2460072161/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2460072161?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Yu, Shumei</creatorcontrib><creatorcontrib>Hou, Pengcheng</creatorcontrib><creatorcontrib>Sun, Rongchuan</creatorcontrib><creatorcontrib>Kuang, Shaolong</creatorcontrib><creatorcontrib>Zhang, Fengfeng</creatorcontrib><creatorcontrib>Zhou, Mingchuan</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Sun, Lining</creatorcontrib><title>Correlated Skin Surface and Tumor Motion Modeling for Treatment Planning in Robotic Radiosurgery</title><title>Frontiers in neurorobotics</title><description>In robotic radiosurgery, motion tracking is crucial for accurate treatment planning of tumor inside thoracic or abdominal cavity. Currently, motion characterization for respiration tracking mainly focuses on markers which are placed on surface of human chest. Nevertheless, limited markers are not capable of expressing the comprehensive motion feature of human chest and abdomen. In this paper, we proposed a method of respiratory motion characterization based on the voxel modeling of thoracoabdominal torso. Point cloud data from depth cameras were used to achieve three-dimensional modeling of the chest and abdomen surface during respiration, and a dimensionality reduction algorithm was proposed to extract respiratory features from the established voxel model. Finally, experimental results including the accuracy of voxel model and correlation coefficient were compared to validate the feasibility of the proposed method, which provides enhanced accuracy of target motion correlation than traditional methods that utilized external markers.</description><subject>Abdomen</subject><subject>Cameras</subject><subject>Chest</subject><subject>correlation model</subject><subject>Experiments</subject><subject>Fuzzy logic</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Neuroscience</subject><subject>Patients</subject><subject>Principal components analysis</subject><subject>Radiosurgery</subject><subject>Respiration</subject><subject>respiratory motion characterization</subject><subject>Skin</subject><subject>surface modeling</subject><subject>Thorax</subject><subject>tumor tracking</subject><subject>Tumors</subject><subject>voxel model</subject><issn>1662-5218</issn><issn>1662-5218</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktvEzEUhUcIREvhB7AbiQ2bBL8fGyQU8ahUBGrD2njs6-AwYxd7Bqn_HiepEGV1r66PPx1fn657idGaUqXfhDTkeU0QQWuuCFX8UXeOhSArTrB6_E9_1j2rdY-QIIKrp90ZpaS1Wp133ze5FBjtDL6_-RlTf7OUYB30Nvl-u0y59J_zHHNqxcMY064PbbYtYOcJ0tx_HW1Kh3G7e52bn-j6a-tjrkvZQbl73j0Jdqzw4r5edN8-vN9uPq2uvny83Ly7Wjkm0bzienAiUDkQTZwn2gKjkgUFloWBkQFLJpDmDkCj4KSgEoFUOrgBJBlQoBfd5Ynrs92b2xInW-5MttEcB7nsjC3N3AiGgdI-MISwt8x6q3jAwnIpCHMUcd5Yb0-s22WYwLv2zmLHB9CHJyn-MLv820ihFDsCXt8DSv61QJ3NFKuDse0K8lINYe1ntFCCNumr_6T7vJTUVnVQISQJFrip8EnlSq61QPhrBiNzyII5ZsEcsmBOWaB_ANfqp-U</recordid><startdate>20201112</startdate><enddate>20201112</enddate><creator>Yu, Shumei</creator><creator>Hou, Pengcheng</creator><creator>Sun, Rongchuan</creator><creator>Kuang, Shaolong</creator><creator>Zhang, Fengfeng</creator><creator>Zhou, Mingchuan</creator><creator>Guo, Jing</creator><creator>Sun, Lining</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20201112</creationdate><title>Correlated Skin Surface and Tumor Motion Modeling for Treatment Planning in Robotic Radiosurgery</title><author>Yu, Shumei ; Hou, Pengcheng ; Sun, Rongchuan ; Kuang, Shaolong ; Zhang, Fengfeng ; Zhou, Mingchuan ; Guo, Jing ; Sun, Lining</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-59bc6f37b292cd29ae4374f8ea4fb42b1746095cee90fc76370e789fcbe72b0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abdomen</topic><topic>Cameras</topic><topic>Chest</topic><topic>correlation model</topic><topic>Experiments</topic><topic>Fuzzy logic</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Neuroscience</topic><topic>Patients</topic><topic>Principal components analysis</topic><topic>Radiosurgery</topic><topic>Respiration</topic><topic>respiratory motion characterization</topic><topic>Skin</topic><topic>surface modeling</topic><topic>Thorax</topic><topic>tumor tracking</topic><topic>Tumors</topic><topic>voxel model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Shumei</creatorcontrib><creatorcontrib>Hou, Pengcheng</creatorcontrib><creatorcontrib>Sun, Rongchuan</creatorcontrib><creatorcontrib>Kuang, Shaolong</creatorcontrib><creatorcontrib>Zhang, Fengfeng</creatorcontrib><creatorcontrib>Zhou, Mingchuan</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Sun, Lining</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in neurorobotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Shumei</au><au>Hou, Pengcheng</au><au>Sun, Rongchuan</au><au>Kuang, Shaolong</au><au>Zhang, Fengfeng</au><au>Zhou, Mingchuan</au><au>Guo, Jing</au><au>Sun, Lining</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlated Skin Surface and Tumor Motion Modeling for Treatment Planning in Robotic Radiosurgery</atitle><jtitle>Frontiers in neurorobotics</jtitle><date>2020-11-12</date><risdate>2020</risdate><volume>14</volume><spage>582385</spage><epage>582385</epage><pages>582385-582385</pages><issn>1662-5218</issn><eissn>1662-5218</eissn><abstract>In robotic radiosurgery, motion tracking is crucial for accurate treatment planning of tumor inside thoracic or abdominal cavity. Currently, motion characterization for respiration tracking mainly focuses on markers which are placed on surface of human chest. Nevertheless, limited markers are not capable of expressing the comprehensive motion feature of human chest and abdomen. In this paper, we proposed a method of respiratory motion characterization based on the voxel modeling of thoracoabdominal torso. Point cloud data from depth cameras were used to achieve three-dimensional modeling of the chest and abdomen surface during respiration, and a dimensionality reduction algorithm was proposed to extract respiratory features from the established voxel model. Finally, experimental results including the accuracy of voxel model and correlation coefficient were compared to validate the feasibility of the proposed method, which provides enhanced accuracy of target motion correlation than traditional methods that utilized external markers.</abstract><cop>Lausanne</cop><pub>Frontiers Research Foundation</pub><pmid>33262698</pmid><doi>10.3389/fnbot.2020.582385</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-5218 |
ispartof | Frontiers in neurorobotics, 2020-11, Vol.14, p.582385-582385 |
issn | 1662-5218 1662-5218 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4e89df4001da4ada85f16a57624c3055 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Abdomen Cameras Chest correlation model Experiments Fuzzy logic Methods Neural networks Neuroscience Patients Principal components analysis Radiosurgery Respiration respiratory motion characterization Skin surface modeling Thorax tumor tracking Tumors voxel model |
title | Correlated Skin Surface and Tumor Motion Modeling for Treatment Planning in Robotic Radiosurgery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlated%20Skin%20Surface%20and%20Tumor%20Motion%20Modeling%20for%20Treatment%20Planning%20in%20Robotic%20Radiosurgery&rft.jtitle=Frontiers%20in%20neurorobotics&rft.au=Yu,%20Shumei&rft.date=2020-11-12&rft.volume=14&rft.spage=582385&rft.epage=582385&rft.pages=582385-582385&rft.issn=1662-5218&rft.eissn=1662-5218&rft_id=info:doi/10.3389/fnbot.2020.582385&rft_dat=%3Cproquest_doaj_%3E2460072161%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-59bc6f37b292cd29ae4374f8ea4fb42b1746095cee90fc76370e789fcbe72b0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2460072161&rft_id=info:pmid/33262698&rfr_iscdi=true |