Loading…
A review of constraints and adjustable parameters in microgrids for cost and carbon dioxide emission reduction
In a world grappling with escalating energy demand and pressing environmental concerns, microgrids have risen as a promising solution to bolster energy efficiency, alleviate costs, and mitigate carbon emissions. This article delves into the dynamic realm of microgrids, emphasizing their indispensabl...
Saved in:
Published in: | Heliyon 2024-03, Vol.10 (6), p.e27489-e27489, Article e27489 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In a world grappling with escalating energy demand and pressing environmental concerns, microgrids have risen as a promising solution to bolster energy efficiency, alleviate costs, and mitigate carbon emissions. This article delves into the dynamic realm of microgrids, emphasizing their indispensable role in addressing today's energy needs while navigating the hazards of pollution. Microgrid operations are intricately shaped by a web of constraints, categorized into two essential domains: those inherent to the microgrid itself and those dictated by the external environment. These constraints, stemming from component limitations, environmental factors, and grid connections, exert substantial influence over the microgrid's operational capabilities. Of particular significance is the three-tiered control framework, encompassing primary, secondary, and energy management controls. This framework guarantees the microgrid's optimal function, regulating power quality, frequency, and voltage within predefined parameters. Central to these operations is the energy management control, the third tier, which warrants in-depth exploration. This facet unveils the art of fine-tuning parameters within the microgrid's components, seamlessly connecting them with their surroundings to streamline energy flow and safeguard uninterrupted operation. In essence, this article scrutinizes the intricate interplay between microgrid constraints and energy management parameters, illuminating how the nuanced adjustment of these parameters is instrumental in achieving the dual objectives of cost reduction and Carbon Dioxide emission minimization, thereby shaping a more sustainable and eco-conscious energy landscape. This study investigates microgrid dynamics, focusing on the nuanced interplay between constraints and energy management for cost reduction and Carbon Dioxide minimization. We employ a three-tiered control framework—primary, secondary, and energy management controls—to regulate microgrid function, exploring fine-tuned parameter adjustments for optimal performance. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e27489 |