Loading…

Ni-Cu Nanoparticles and Their Feasibility for Magnetic Hyperthermia

Ni-Cu nanoparticles have been synthesized by reducing Ni and Cu from metal precursors using a sol–gel route followed by annealing at 300 °C for 1, 2, 3, 6, 8, and 10 h for controlled self-regulating magnetic hyperthermia applications. Particle morphology and crystal structure revealed spherical nano...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2020-10, Vol.10 (10), p.1988
Main Authors: Meneses-Brassea, Bianca P., Borrego, Edgar A., Blazer, Dawn S., Sanad, Mohamed F., Pourmiri, Shirin, Gutierrez, Denisse A., Varela-Ramirez, Armando, Hadjipanayis, George C., El-Gendy, Ahmed A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ni-Cu nanoparticles have been synthesized by reducing Ni and Cu from metal precursors using a sol–gel route followed by annealing at 300 °C for 1, 2, 3, 6, 8, and 10 h for controlled self-regulating magnetic hyperthermia applications. Particle morphology and crystal structure revealed spherical nanoparticles with a cubic structure and an average size of 50, 60, 53, 87, and 87 nm for as-made and annealed samples at 300 °C for 1, 3, 6, and 10 h, respectively. Moreover, hysteresis loops indicated ferromagnetic behavior with saturation magnetization (Ms) ranging from 13–20 emu/g at 300 K. Additionally, Zero-filed cooled and field cooled (ZFC-FC) curves revealed that each sample contains superparamagnetic nanoparticles with a blocking temperature (TB) of 196–260 K. Their potential use for magnetic hyperthermia was tested under the therapeutic limits of an alternating magnetic field. The samples exhibited a heating rate ranging from 0.1 to 1.7 °C/min and a significant dissipated heating power measured as a specific absorption rate (SAR) of 6–80 W/g. The heating curves saturated after reaching the Curie temperature (Tc), ranging from 30–61 °C within the therapeutic temperature limit. An in vitro cytotoxicity test of these Ni-Cu samples in biological tissues was performed via exposing human breast cancer MDA-MB231 cells to a gradient of concentrations of the sample with 53 nm particles (annealed at 300 °C for 3 h) and reviewing their cytotoxic effects. For low concentrations, this sample showed no toxic effects to the cells, revealing its biocompatibility to be used in the future for in vitro/in vivo magnetic hyperthermia treatment of cancer.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano10101988