Loading…

Analyses of transcriptomes and the first complete genome of Leucocalocybe mongolica provide new insights into phylogenetic relationships and conservation

In this study, we report a de novo assembly of the first high-quality genome for a wild mushroom species Leucocalocybe mongolica (LM). We performed high-throughput transcriptome sequencing to analyze the genetic basis for the life history of LM. Our results show that the genome size of LM is 46.0 Mb...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-02, Vol.11 (1), p.2930-2930, Article 2930
Main Authors: Duan, Mingzheng, Bao, Haiying, Bau, Tolgor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we report a de novo assembly of the first high-quality genome for a wild mushroom species Leucocalocybe mongolica (LM). We performed high-throughput transcriptome sequencing to analyze the genetic basis for the life history of LM. Our results show that the genome size of LM is 46.0 Mb, including 26 contigs with a contig N50 size of 3.6 Mb. In total, we predicted 11,599 protein-coding genes, of which 65.7% (7630) could be aligned with high confidence to annotated homologous genes in other species. We performed phylogenetic analyses using genes form 3269 single-copy gene families and showed support for distinguishing LM from the genus Tricholoma (L.) P.Kumm., in which it is sometimes circumscribed . We believe that one reason for limited wild occurrences of LM may be the loss of key metabolic genes, especially carbohydrate-active enzymes (CAZymes), based on comparisons with other closely related species. The results of our transcriptome analyses between vegetative (mycelia) and reproductive (fruiting bodies) organs indicated that changes in gene expression among some key CAZyme genes may help to determine the switch from asexual to sexual reproduction. Taken together, our genomic and transcriptome data for LM comprise a valuable resource for both understanding the evolutionary and life history of this species.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-81784-6