Loading…
FENCE: Fast, ExteNsible, and ConsolidatEd Framework for Intelligent Big Data Processing
The proliferation of smart devices and the advancement of data-intensive services has led to explosion of data, which uncovers massive opportunities as well as challenges related to real-time analysis of big data streams. The edge computing frameworks implemented over manycore systems can be conside...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.125423-125437 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-422b0844afda092e7a5c29c4758706f442b9a5026431026314e445aa55fd3fd43 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-422b0844afda092e7a5c29c4758706f442b9a5026431026314e445aa55fd3fd43 |
container_end_page | 125437 |
container_issue | |
container_start_page | 125423 |
container_title | IEEE access |
container_volume | 8 |
creator | Ramneek Cha, Seung-Jun Pack, Sangheon Jeon, Seung Hyub Jeong, Yeon Jeong Kim, Jin Mee Jung, Sungin |
description | The proliferation of smart devices and the advancement of data-intensive services has led to explosion of data, which uncovers massive opportunities as well as challenges related to real-time analysis of big data streams. The edge computing frameworks implemented over manycore systems can be considered as a promising solution to address these challenges. However, in spite of the availability of modern computing systems with a large number of processing cores and high memory capacity, the performance and scalability of manycore systems can be limited by the software and operating system (OS) level bottlenecks. In this work, we focus on these challenges, and discuss how accelerated communication, efficient caching, and high performance computation can be provisioned over manycore systems. The proposed Fast, ExteNsible, and ConsolidatEd (FENCE) framework leverages the availability of a large number of computing cores and overcomes the OS level bottlenecks to provide high performance and scalability for intelligent big data processing. We implemented a prototype of FENCE and the experiment results demonstrate that FENCE provides improved data reception throughput, read/write throughput, and application processing performance as compared to the baseline Linux system. |
doi_str_mv | 10.1109/ACCESS.2020.3007747 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4eb31f05fdd64e9c86766f6d2d32af5e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9134769</ieee_id><doaj_id>oai_doaj_org_article_4eb31f05fdd64e9c86766f6d2d32af5e</doaj_id><sourcerecordid>2454640792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-422b0844afda092e7a5c29c4758706f442b9a5026431026314e445aa55fd3fd43</originalsourceid><addsrcrecordid>eNpNUV1r3DAQNKWBhjS_IC-Cvuau-lhJVt9S19cehDSQhD6KPUs6dHWsVFJI--_r1CF0H3aXYWZ2YZrmjNE1Y9R8vOi6_uZmzSmna0Gp1qDfNMecKbMSUqi3_-3vmtNSDnSudoakPm5-bPqrrv9ENljqOel_V39V4m705wQnR7o0lTRGh7V3ZJPx3j-l_JOElMl2qn4c495PlXyOe_IFK5LrnAZfSpz275ujgGPxpy_zpLnb9Lfdt9Xl96_b7uJyNQBt6wo439EWAINDarjXKAduBtCy1VQFAL4zKClXINjcBQMPIBGlDE4EB-Kk2S6-LuHBPuR4j_mPTRjtPyDlvcVc4zB6C34nWKCz0inwZmiVVioox53gGKSfvT4sXg85_Xr0pdpDeszT_L7lIEEB1YbPLLGwhpxKyT68XmXUPgdil0DscyD2JZBZdbaoovf-VWGYAK2M-At244Qq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454640792</pqid></control><display><type>article</type><title>FENCE: Fast, ExteNsible, and ConsolidatEd Framework for Intelligent Big Data Processing</title><source>IEEE Xplore Open Access Journals</source><creator>Ramneek ; Cha, Seung-Jun ; Pack, Sangheon ; Jeon, Seung Hyub ; Jeong, Yeon Jeong ; Kim, Jin Mee ; Jung, Sungin</creator><creatorcontrib>Ramneek ; Cha, Seung-Jun ; Pack, Sangheon ; Jeon, Seung Hyub ; Jeong, Yeon Jeong ; Kim, Jin Mee ; Jung, Sungin</creatorcontrib><description>The proliferation of smart devices and the advancement of data-intensive services has led to explosion of data, which uncovers massive opportunities as well as challenges related to real-time analysis of big data streams. The edge computing frameworks implemented over manycore systems can be considered as a promising solution to address these challenges. However, in spite of the availability of modern computing systems with a large number of processing cores and high memory capacity, the performance and scalability of manycore systems can be limited by the software and operating system (OS) level bottlenecks. In this work, we focus on these challenges, and discuss how accelerated communication, efficient caching, and high performance computation can be provisioned over manycore systems. The proposed Fast, ExteNsible, and ConsolidatEd (FENCE) framework leverages the availability of a large number of computing cores and overcomes the OS level bottlenecks to provide high performance and scalability for intelligent big data processing. We implemented a prototype of FENCE and the experiment results demonstrate that FENCE provides improved data reception throughput, read/write throughput, and application processing performance as compared to the baseline Linux system.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3007747</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Availability ; Big Data ; Caching ; Data processing ; Data transmission ; Edge computing ; Electronic devices ; Extensibility ; IoT ; Manycore systems ; Performance evaluation ; Real-time systems ; Scalability ; stream analytics</subject><ispartof>IEEE access, 2020, Vol.8, p.125423-125437</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-422b0844afda092e7a5c29c4758706f442b9a5026431026314e445aa55fd3fd43</citedby><cites>FETCH-LOGICAL-c408t-422b0844afda092e7a5c29c4758706f442b9a5026431026314e445aa55fd3fd43</cites><orcidid>0000-0001-9375-6883 ; 0000-0003-4420-8412 ; 0000-0002-1085-1568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9134769$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ramneek</creatorcontrib><creatorcontrib>Cha, Seung-Jun</creatorcontrib><creatorcontrib>Pack, Sangheon</creatorcontrib><creatorcontrib>Jeon, Seung Hyub</creatorcontrib><creatorcontrib>Jeong, Yeon Jeong</creatorcontrib><creatorcontrib>Kim, Jin Mee</creatorcontrib><creatorcontrib>Jung, Sungin</creatorcontrib><title>FENCE: Fast, ExteNsible, and ConsolidatEd Framework for Intelligent Big Data Processing</title><title>IEEE access</title><addtitle>Access</addtitle><description>The proliferation of smart devices and the advancement of data-intensive services has led to explosion of data, which uncovers massive opportunities as well as challenges related to real-time analysis of big data streams. The edge computing frameworks implemented over manycore systems can be considered as a promising solution to address these challenges. However, in spite of the availability of modern computing systems with a large number of processing cores and high memory capacity, the performance and scalability of manycore systems can be limited by the software and operating system (OS) level bottlenecks. In this work, we focus on these challenges, and discuss how accelerated communication, efficient caching, and high performance computation can be provisioned over manycore systems. The proposed Fast, ExteNsible, and ConsolidatEd (FENCE) framework leverages the availability of a large number of computing cores and overcomes the OS level bottlenecks to provide high performance and scalability for intelligent big data processing. We implemented a prototype of FENCE and the experiment results demonstrate that FENCE provides improved data reception throughput, read/write throughput, and application processing performance as compared to the baseline Linux system.</description><subject>Availability</subject><subject>Big Data</subject><subject>Caching</subject><subject>Data processing</subject><subject>Data transmission</subject><subject>Edge computing</subject><subject>Electronic devices</subject><subject>Extensibility</subject><subject>IoT</subject><subject>Manycore systems</subject><subject>Performance evaluation</subject><subject>Real-time systems</subject><subject>Scalability</subject><subject>stream analytics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1r3DAQNKWBhjS_IC-Cvuau-lhJVt9S19cehDSQhD6KPUs6dHWsVFJI--_r1CF0H3aXYWZ2YZrmjNE1Y9R8vOi6_uZmzSmna0Gp1qDfNMecKbMSUqi3_-3vmtNSDnSudoakPm5-bPqrrv9ENljqOel_V39V4m705wQnR7o0lTRGh7V3ZJPx3j-l_JOElMl2qn4c495PlXyOe_IFK5LrnAZfSpz275ujgGPxpy_zpLnb9Lfdt9Xl96_b7uJyNQBt6wo439EWAINDarjXKAduBtCy1VQFAL4zKClXINjcBQMPIBGlDE4EB-Kk2S6-LuHBPuR4j_mPTRjtPyDlvcVc4zB6C34nWKCz0inwZmiVVioox53gGKSfvT4sXg85_Xr0pdpDeszT_L7lIEEB1YbPLLGwhpxKyT68XmXUPgdil0DscyD2JZBZdbaoovf-VWGYAK2M-At244Qq</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ramneek</creator><creator>Cha, Seung-Jun</creator><creator>Pack, Sangheon</creator><creator>Jeon, Seung Hyub</creator><creator>Jeong, Yeon Jeong</creator><creator>Kim, Jin Mee</creator><creator>Jung, Sungin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9375-6883</orcidid><orcidid>https://orcid.org/0000-0003-4420-8412</orcidid><orcidid>https://orcid.org/0000-0002-1085-1568</orcidid></search><sort><creationdate>2020</creationdate><title>FENCE: Fast, ExteNsible, and ConsolidatEd Framework for Intelligent Big Data Processing</title><author>Ramneek ; Cha, Seung-Jun ; Pack, Sangheon ; Jeon, Seung Hyub ; Jeong, Yeon Jeong ; Kim, Jin Mee ; Jung, Sungin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-422b0844afda092e7a5c29c4758706f442b9a5026431026314e445aa55fd3fd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Availability</topic><topic>Big Data</topic><topic>Caching</topic><topic>Data processing</topic><topic>Data transmission</topic><topic>Edge computing</topic><topic>Electronic devices</topic><topic>Extensibility</topic><topic>IoT</topic><topic>Manycore systems</topic><topic>Performance evaluation</topic><topic>Real-time systems</topic><topic>Scalability</topic><topic>stream analytics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramneek</creatorcontrib><creatorcontrib>Cha, Seung-Jun</creatorcontrib><creatorcontrib>Pack, Sangheon</creatorcontrib><creatorcontrib>Jeon, Seung Hyub</creatorcontrib><creatorcontrib>Jeong, Yeon Jeong</creatorcontrib><creatorcontrib>Kim, Jin Mee</creatorcontrib><creatorcontrib>Jung, Sungin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals at publisher websites</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramneek</au><au>Cha, Seung-Jun</au><au>Pack, Sangheon</au><au>Jeon, Seung Hyub</au><au>Jeong, Yeon Jeong</au><au>Kim, Jin Mee</au><au>Jung, Sungin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FENCE: Fast, ExteNsible, and ConsolidatEd Framework for Intelligent Big Data Processing</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>125423</spage><epage>125437</epage><pages>125423-125437</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The proliferation of smart devices and the advancement of data-intensive services has led to explosion of data, which uncovers massive opportunities as well as challenges related to real-time analysis of big data streams. The edge computing frameworks implemented over manycore systems can be considered as a promising solution to address these challenges. However, in spite of the availability of modern computing systems with a large number of processing cores and high memory capacity, the performance and scalability of manycore systems can be limited by the software and operating system (OS) level bottlenecks. In this work, we focus on these challenges, and discuss how accelerated communication, efficient caching, and high performance computation can be provisioned over manycore systems. The proposed Fast, ExteNsible, and ConsolidatEd (FENCE) framework leverages the availability of a large number of computing cores and overcomes the OS level bottlenecks to provide high performance and scalability for intelligent big data processing. We implemented a prototype of FENCE and the experiment results demonstrate that FENCE provides improved data reception throughput, read/write throughput, and application processing performance as compared to the baseline Linux system.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3007747</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9375-6883</orcidid><orcidid>https://orcid.org/0000-0003-4420-8412</orcidid><orcidid>https://orcid.org/0000-0002-1085-1568</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.125423-125437 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4eb31f05fdd64e9c86766f6d2d32af5e |
source | IEEE Xplore Open Access Journals |
subjects | Availability Big Data Caching Data processing Data transmission Edge computing Electronic devices Extensibility IoT Manycore systems Performance evaluation Real-time systems Scalability stream analytics |
title | FENCE: Fast, ExteNsible, and ConsolidatEd Framework for Intelligent Big Data Processing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FENCE:%20Fast,%20ExteNsible,%20and%20ConsolidatEd%20Framework%20for%20Intelligent%20Big%20Data%20Processing&rft.jtitle=IEEE%20access&rft.au=Ramneek&rft.date=2020&rft.volume=8&rft.spage=125423&rft.epage=125437&rft.pages=125423-125437&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3007747&rft_dat=%3Cproquest_doaj_%3E2454640792%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-422b0844afda092e7a5c29c4758706f442b9a5026431026314e445aa55fd3fd43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454640792&rft_id=info:pmid/&rft_ieee_id=9134769&rfr_iscdi=true |