Loading…

FENCE: Fast, ExteNsible, and ConsolidatEd Framework for Intelligent Big Data Processing

The proliferation of smart devices and the advancement of data-intensive services has led to explosion of data, which uncovers massive opportunities as well as challenges related to real-time analysis of big data streams. The edge computing frameworks implemented over manycore systems can be conside...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.125423-125437
Main Authors: Ramneek, Cha, Seung-Jun, Pack, Sangheon, Jeon, Seung Hyub, Jeong, Yeon Jeong, Kim, Jin Mee, Jung, Sungin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-422b0844afda092e7a5c29c4758706f442b9a5026431026314e445aa55fd3fd43
cites cdi_FETCH-LOGICAL-c408t-422b0844afda092e7a5c29c4758706f442b9a5026431026314e445aa55fd3fd43
container_end_page 125437
container_issue
container_start_page 125423
container_title IEEE access
container_volume 8
creator Ramneek
Cha, Seung-Jun
Pack, Sangheon
Jeon, Seung Hyub
Jeong, Yeon Jeong
Kim, Jin Mee
Jung, Sungin
description The proliferation of smart devices and the advancement of data-intensive services has led to explosion of data, which uncovers massive opportunities as well as challenges related to real-time analysis of big data streams. The edge computing frameworks implemented over manycore systems can be considered as a promising solution to address these challenges. However, in spite of the availability of modern computing systems with a large number of processing cores and high memory capacity, the performance and scalability of manycore systems can be limited by the software and operating system (OS) level bottlenecks. In this work, we focus on these challenges, and discuss how accelerated communication, efficient caching, and high performance computation can be provisioned over manycore systems. The proposed Fast, ExteNsible, and ConsolidatEd (FENCE) framework leverages the availability of a large number of computing cores and overcomes the OS level bottlenecks to provide high performance and scalability for intelligent big data processing. We implemented a prototype of FENCE and the experiment results demonstrate that FENCE provides improved data reception throughput, read/write throughput, and application processing performance as compared to the baseline Linux system.
doi_str_mv 10.1109/ACCESS.2020.3007747
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4eb31f05fdd64e9c86766f6d2d32af5e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9134769</ieee_id><doaj_id>oai_doaj_org_article_4eb31f05fdd64e9c86766f6d2d32af5e</doaj_id><sourcerecordid>2454640792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-422b0844afda092e7a5c29c4758706f442b9a5026431026314e445aa55fd3fd43</originalsourceid><addsrcrecordid>eNpNUV1r3DAQNKWBhjS_IC-Cvuau-lhJVt9S19cehDSQhD6KPUs6dHWsVFJI--_r1CF0H3aXYWZ2YZrmjNE1Y9R8vOi6_uZmzSmna0Gp1qDfNMecKbMSUqi3_-3vmtNSDnSudoakPm5-bPqrrv9ENljqOel_V39V4m705wQnR7o0lTRGh7V3ZJPx3j-l_JOElMl2qn4c495PlXyOe_IFK5LrnAZfSpz275ujgGPxpy_zpLnb9Lfdt9Xl96_b7uJyNQBt6wo439EWAINDarjXKAduBtCy1VQFAL4zKClXINjcBQMPIBGlDE4EB-Kk2S6-LuHBPuR4j_mPTRjtPyDlvcVc4zB6C34nWKCz0inwZmiVVioox53gGKSfvT4sXg85_Xr0pdpDeszT_L7lIEEB1YbPLLGwhpxKyT68XmXUPgdil0DscyD2JZBZdbaoovf-VWGYAK2M-At244Qq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454640792</pqid></control><display><type>article</type><title>FENCE: Fast, ExteNsible, and ConsolidatEd Framework for Intelligent Big Data Processing</title><source>IEEE Xplore Open Access Journals</source><creator>Ramneek ; Cha, Seung-Jun ; Pack, Sangheon ; Jeon, Seung Hyub ; Jeong, Yeon Jeong ; Kim, Jin Mee ; Jung, Sungin</creator><creatorcontrib>Ramneek ; Cha, Seung-Jun ; Pack, Sangheon ; Jeon, Seung Hyub ; Jeong, Yeon Jeong ; Kim, Jin Mee ; Jung, Sungin</creatorcontrib><description>The proliferation of smart devices and the advancement of data-intensive services has led to explosion of data, which uncovers massive opportunities as well as challenges related to real-time analysis of big data streams. The edge computing frameworks implemented over manycore systems can be considered as a promising solution to address these challenges. However, in spite of the availability of modern computing systems with a large number of processing cores and high memory capacity, the performance and scalability of manycore systems can be limited by the software and operating system (OS) level bottlenecks. In this work, we focus on these challenges, and discuss how accelerated communication, efficient caching, and high performance computation can be provisioned over manycore systems. The proposed Fast, ExteNsible, and ConsolidatEd (FENCE) framework leverages the availability of a large number of computing cores and overcomes the OS level bottlenecks to provide high performance and scalability for intelligent big data processing. We implemented a prototype of FENCE and the experiment results demonstrate that FENCE provides improved data reception throughput, read/write throughput, and application processing performance as compared to the baseline Linux system.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3007747</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Availability ; Big Data ; Caching ; Data processing ; Data transmission ; Edge computing ; Electronic devices ; Extensibility ; IoT ; Manycore systems ; Performance evaluation ; Real-time systems ; Scalability ; stream analytics</subject><ispartof>IEEE access, 2020, Vol.8, p.125423-125437</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-422b0844afda092e7a5c29c4758706f442b9a5026431026314e445aa55fd3fd43</citedby><cites>FETCH-LOGICAL-c408t-422b0844afda092e7a5c29c4758706f442b9a5026431026314e445aa55fd3fd43</cites><orcidid>0000-0001-9375-6883 ; 0000-0003-4420-8412 ; 0000-0002-1085-1568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9134769$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ramneek</creatorcontrib><creatorcontrib>Cha, Seung-Jun</creatorcontrib><creatorcontrib>Pack, Sangheon</creatorcontrib><creatorcontrib>Jeon, Seung Hyub</creatorcontrib><creatorcontrib>Jeong, Yeon Jeong</creatorcontrib><creatorcontrib>Kim, Jin Mee</creatorcontrib><creatorcontrib>Jung, Sungin</creatorcontrib><title>FENCE: Fast, ExteNsible, and ConsolidatEd Framework for Intelligent Big Data Processing</title><title>IEEE access</title><addtitle>Access</addtitle><description>The proliferation of smart devices and the advancement of data-intensive services has led to explosion of data, which uncovers massive opportunities as well as challenges related to real-time analysis of big data streams. The edge computing frameworks implemented over manycore systems can be considered as a promising solution to address these challenges. However, in spite of the availability of modern computing systems with a large number of processing cores and high memory capacity, the performance and scalability of manycore systems can be limited by the software and operating system (OS) level bottlenecks. In this work, we focus on these challenges, and discuss how accelerated communication, efficient caching, and high performance computation can be provisioned over manycore systems. The proposed Fast, ExteNsible, and ConsolidatEd (FENCE) framework leverages the availability of a large number of computing cores and overcomes the OS level bottlenecks to provide high performance and scalability for intelligent big data processing. We implemented a prototype of FENCE and the experiment results demonstrate that FENCE provides improved data reception throughput, read/write throughput, and application processing performance as compared to the baseline Linux system.</description><subject>Availability</subject><subject>Big Data</subject><subject>Caching</subject><subject>Data processing</subject><subject>Data transmission</subject><subject>Edge computing</subject><subject>Electronic devices</subject><subject>Extensibility</subject><subject>IoT</subject><subject>Manycore systems</subject><subject>Performance evaluation</subject><subject>Real-time systems</subject><subject>Scalability</subject><subject>stream analytics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1r3DAQNKWBhjS_IC-Cvuau-lhJVt9S19cehDSQhD6KPUs6dHWsVFJI--_r1CF0H3aXYWZ2YZrmjNE1Y9R8vOi6_uZmzSmna0Gp1qDfNMecKbMSUqi3_-3vmtNSDnSudoakPm5-bPqrrv9ENljqOel_V39V4m705wQnR7o0lTRGh7V3ZJPx3j-l_JOElMl2qn4c495PlXyOe_IFK5LrnAZfSpz275ujgGPxpy_zpLnb9Lfdt9Xl96_b7uJyNQBt6wo439EWAINDarjXKAduBtCy1VQFAL4zKClXINjcBQMPIBGlDE4EB-Kk2S6-LuHBPuR4j_mPTRjtPyDlvcVc4zB6C34nWKCz0inwZmiVVioox53gGKSfvT4sXg85_Xr0pdpDeszT_L7lIEEB1YbPLLGwhpxKyT68XmXUPgdil0DscyD2JZBZdbaoovf-VWGYAK2M-At244Qq</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ramneek</creator><creator>Cha, Seung-Jun</creator><creator>Pack, Sangheon</creator><creator>Jeon, Seung Hyub</creator><creator>Jeong, Yeon Jeong</creator><creator>Kim, Jin Mee</creator><creator>Jung, Sungin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9375-6883</orcidid><orcidid>https://orcid.org/0000-0003-4420-8412</orcidid><orcidid>https://orcid.org/0000-0002-1085-1568</orcidid></search><sort><creationdate>2020</creationdate><title>FENCE: Fast, ExteNsible, and ConsolidatEd Framework for Intelligent Big Data Processing</title><author>Ramneek ; Cha, Seung-Jun ; Pack, Sangheon ; Jeon, Seung Hyub ; Jeong, Yeon Jeong ; Kim, Jin Mee ; Jung, Sungin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-422b0844afda092e7a5c29c4758706f442b9a5026431026314e445aa55fd3fd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Availability</topic><topic>Big Data</topic><topic>Caching</topic><topic>Data processing</topic><topic>Data transmission</topic><topic>Edge computing</topic><topic>Electronic devices</topic><topic>Extensibility</topic><topic>IoT</topic><topic>Manycore systems</topic><topic>Performance evaluation</topic><topic>Real-time systems</topic><topic>Scalability</topic><topic>stream analytics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramneek</creatorcontrib><creatorcontrib>Cha, Seung-Jun</creatorcontrib><creatorcontrib>Pack, Sangheon</creatorcontrib><creatorcontrib>Jeon, Seung Hyub</creatorcontrib><creatorcontrib>Jeong, Yeon Jeong</creatorcontrib><creatorcontrib>Kim, Jin Mee</creatorcontrib><creatorcontrib>Jung, Sungin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals at publisher websites</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramneek</au><au>Cha, Seung-Jun</au><au>Pack, Sangheon</au><au>Jeon, Seung Hyub</au><au>Jeong, Yeon Jeong</au><au>Kim, Jin Mee</au><au>Jung, Sungin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FENCE: Fast, ExteNsible, and ConsolidatEd Framework for Intelligent Big Data Processing</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>125423</spage><epage>125437</epage><pages>125423-125437</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The proliferation of smart devices and the advancement of data-intensive services has led to explosion of data, which uncovers massive opportunities as well as challenges related to real-time analysis of big data streams. The edge computing frameworks implemented over manycore systems can be considered as a promising solution to address these challenges. However, in spite of the availability of modern computing systems with a large number of processing cores and high memory capacity, the performance and scalability of manycore systems can be limited by the software and operating system (OS) level bottlenecks. In this work, we focus on these challenges, and discuss how accelerated communication, efficient caching, and high performance computation can be provisioned over manycore systems. The proposed Fast, ExteNsible, and ConsolidatEd (FENCE) framework leverages the availability of a large number of computing cores and overcomes the OS level bottlenecks to provide high performance and scalability for intelligent big data processing. We implemented a prototype of FENCE and the experiment results demonstrate that FENCE provides improved data reception throughput, read/write throughput, and application processing performance as compared to the baseline Linux system.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3007747</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9375-6883</orcidid><orcidid>https://orcid.org/0000-0003-4420-8412</orcidid><orcidid>https://orcid.org/0000-0002-1085-1568</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.125423-125437
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4eb31f05fdd64e9c86766f6d2d32af5e
source IEEE Xplore Open Access Journals
subjects Availability
Big Data
Caching
Data processing
Data transmission
Edge computing
Electronic devices
Extensibility
IoT
Manycore systems
Performance evaluation
Real-time systems
Scalability
stream analytics
title FENCE: Fast, ExteNsible, and ConsolidatEd Framework for Intelligent Big Data Processing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FENCE:%20Fast,%20ExteNsible,%20and%20ConsolidatEd%20Framework%20for%20Intelligent%20Big%20Data%20Processing&rft.jtitle=IEEE%20access&rft.au=Ramneek&rft.date=2020&rft.volume=8&rft.spage=125423&rft.epage=125437&rft.pages=125423-125437&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3007747&rft_dat=%3Cproquest_doaj_%3E2454640792%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-422b0844afda092e7a5c29c4758706f442b9a5026431026314e445aa55fd3fd43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454640792&rft_id=info:pmid/&rft_ieee_id=9134769&rfr_iscdi=true