Loading…

Experimental study of polymeric composite reinforced with carbon fiber for mud lost control application

This study introduces a novel application of composite materials as Lost Circulation Materials (LCM), leveraging their high specific strength, non-abrasiveness, and environmentally friendly profile. A new formulation of Carbon Fiber Reinforced Polymer (CFRP) composites was developed using an advance...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-10, Vol.14 (1), p.25225-12, Article 25225
Main Authors: Khoshmardan, Maryam Abdollahi, Behbahani, Taraneh Jafari, Ghotbi, Cyrus, Hassanpouryouzband, Aliakbar, Nasiri, Alireza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study introduces a novel application of composite materials as Lost Circulation Materials (LCM), leveraging their high specific strength, non-abrasiveness, and environmentally friendly profile. A new formulation of Carbon Fiber Reinforced Polymer (CFRP) composites was developed using an advanced twin-screw extrusion process followed by compression molding. Their efficacy in sealing fractures was quantitatively assessed in accordance with American Petroleum Institute (API) standards using a Bridging Material Tester (BMT). Comparative analysis with previous studies on Bagasse Fiber Reinforced Polymer (BFRP) composites was conducted. Interfacial interactions and fracture morphology were examined through Scanning Electron Microscopy (SEM), revealing the CFRP composites’ superior resistance to water absorption. The moisture absorption tests indicated that the CFRP absorbed 0.7% moisture after 24 h, compared to 15% for BFRP, suggesting enhanced durability in wet conditions. However, despite their robust mechanical properties, they exhibited lower fracture-sealing efficiency compared to BFRP composites. These findings not only underscore the potential of composite-based LCMs in enhancing drilling safety but also guide future research toward optimizing composite formulations for more effective field applications.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-76756-5