Loading…
ZnO Nanowire Networks as Photoanode Model Systems for Photoelectrochemical Applications
In this work, the fabrication of zinc oxide (ZnO) nanowire networks is presented. By combining ion-track technology, electrochemical deposition, and atomic layer deposition, hierarchical and self-supporting three-dimensional (3D) networks of pure ZnO- and TiO₂-coated ZnO nanowires were synthesized....
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2018-09, Vol.8 (9), p.693 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c447t-2f2c0dc661fa90d5216006462dc39fa542c56155d0431d6fd32cc5c811a560413 |
---|---|
cites | cdi_FETCH-LOGICAL-c447t-2f2c0dc661fa90d5216006462dc39fa542c56155d0431d6fd32cc5c811a560413 |
container_end_page | |
container_issue | 9 |
container_start_page | 693 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 8 |
creator | Movsesyan, Liana Maijenburg, Albert Wouter Goethals, Noel Sigle, Wilfried Spende, Anne Yang, Florent Kaiser, Bernhard Jaegermann, Wolfram Park, Sun-Young Mul, Guido Trautmann, Christina Toimil-Molares, Maria Eugenia |
description | In this work, the fabrication of zinc oxide (ZnO) nanowire networks is presented. By combining ion-track technology, electrochemical deposition, and atomic layer deposition, hierarchical and self-supporting three-dimensional (3D) networks of pure ZnO- and TiO₂-coated ZnO nanowires were synthesized. Analysis by means of high-resolution transmission electron microscopy revealed a highly crystalline structure of the electrodeposited ZnO wires and the anatase phase of the TiO₂ coating. In photoelectrochemical measurements, the ZnO and ZnO/TiO₂ nanowire networks, used as anodes, generated higher photocurrents compared to those produced by their film counterparts. The ZnO/TiO₂ nanowire network exhibited the highest photocurrents. However, the protection by the TiO₂ coatings against chemical corrosion still needs improvement. The one-dimensionality of the nanowires and the large electrolyte-accessible area make these 3D networks promising photoelectrodes, due to the improved transport properties of photogenerated charge carriers and faster redox reactions at the surface. Moreover, they can find further applications in e.g., sensing, catalytical, and piezoelectric devices. |
doi_str_mv | 10.3390/nano8090693 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4ee2e66f4cd642afbdd6be749faf1a7b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4ee2e66f4cd642afbdd6be749faf1a7b</doaj_id><sourcerecordid>2102331099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-2f2c0dc661fa90d5216006462dc39fa542c56155d0431d6fd32cc5c811a560413</originalsourceid><addsrcrecordid>eNpVkd1rVDEQxYMottQ--V7uY0FWJ59381IopWqhtoKK4EvIJpPubXNvtknWsv-90a1lm4fJMOfwm4FDyFsK7znX8GGyU5qDBqX5C7LPoNczoTV9udPvkcNSbqE9Tflc8tdkjwMDkGq-T37-mq67qwZ5GDJ2V1gfUr4rnS3d12WqqQkeuy-txO7bplQcSxdS3ooY0dWc3BLHwdnYna5WsTV1SFN5Q14FGwsePv4H5MfH8-9nn2eX158uzk4vZ06Ivs5YYA68U4oGq8FLRhWAEop5x3WwUjAnFZXSg-DUq-A5c066OaVWKhCUH5CLLdcne2tWeRht3phkB_NvkPKNsbkOLqIRiAyVCsJ5JZgNC-_VAnvR9gRq-0VjnWxZq_ViRO9wqtnGZ9DnyjQszU36bRRVAljfAMePgJzu11iqGYfiMEY7YVoXwygwzilo3azvtlaXUykZw9MaCuZvsmYn2eY-2r3syfs_R_4H78ygnQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102331099</pqid></control><display><type>article</type><title>ZnO Nanowire Networks as Photoanode Model Systems for Photoelectrochemical Applications</title><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><source>PubMed Central</source><creator>Movsesyan, Liana ; Maijenburg, Albert Wouter ; Goethals, Noel ; Sigle, Wilfried ; Spende, Anne ; Yang, Florent ; Kaiser, Bernhard ; Jaegermann, Wolfram ; Park, Sun-Young ; Mul, Guido ; Trautmann, Christina ; Toimil-Molares, Maria Eugenia</creator><creatorcontrib>Movsesyan, Liana ; Maijenburg, Albert Wouter ; Goethals, Noel ; Sigle, Wilfried ; Spende, Anne ; Yang, Florent ; Kaiser, Bernhard ; Jaegermann, Wolfram ; Park, Sun-Young ; Mul, Guido ; Trautmann, Christina ; Toimil-Molares, Maria Eugenia</creatorcontrib><description>In this work, the fabrication of zinc oxide (ZnO) nanowire networks is presented. By combining ion-track technology, electrochemical deposition, and atomic layer deposition, hierarchical and self-supporting three-dimensional (3D) networks of pure ZnO- and TiO₂-coated ZnO nanowires were synthesized. Analysis by means of high-resolution transmission electron microscopy revealed a highly crystalline structure of the electrodeposited ZnO wires and the anatase phase of the TiO₂ coating. In photoelectrochemical measurements, the ZnO and ZnO/TiO₂ nanowire networks, used as anodes, generated higher photocurrents compared to those produced by their film counterparts. The ZnO/TiO₂ nanowire network exhibited the highest photocurrents. However, the protection by the TiO₂ coatings against chemical corrosion still needs improvement. The one-dimensionality of the nanowires and the large electrolyte-accessible area make these 3D networks promising photoelectrodes, due to the improved transport properties of photogenerated charge carriers and faster redox reactions at the surface. Moreover, they can find further applications in e.g., sensing, catalytical, and piezoelectric devices.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano8090693</identifier><identifier>PMID: 30200568</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>core-shell nanowires ; electrodeposition ; etched ion-track membrane ; nanowire network ; photoelectrochemical applications ; TiO2 ; water splitting ; ZnO</subject><ispartof>Nanomaterials (Basel, Switzerland), 2018-09, Vol.8 (9), p.693</ispartof><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-2f2c0dc661fa90d5216006462dc39fa542c56155d0431d6fd32cc5c811a560413</citedby><cites>FETCH-LOGICAL-c447t-2f2c0dc661fa90d5216006462dc39fa542c56155d0431d6fd32cc5c811a560413</cites><orcidid>0000-0001-7058-6340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164027/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164027/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,37012,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30200568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Movsesyan, Liana</creatorcontrib><creatorcontrib>Maijenburg, Albert Wouter</creatorcontrib><creatorcontrib>Goethals, Noel</creatorcontrib><creatorcontrib>Sigle, Wilfried</creatorcontrib><creatorcontrib>Spende, Anne</creatorcontrib><creatorcontrib>Yang, Florent</creatorcontrib><creatorcontrib>Kaiser, Bernhard</creatorcontrib><creatorcontrib>Jaegermann, Wolfram</creatorcontrib><creatorcontrib>Park, Sun-Young</creatorcontrib><creatorcontrib>Mul, Guido</creatorcontrib><creatorcontrib>Trautmann, Christina</creatorcontrib><creatorcontrib>Toimil-Molares, Maria Eugenia</creatorcontrib><title>ZnO Nanowire Networks as Photoanode Model Systems for Photoelectrochemical Applications</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>In this work, the fabrication of zinc oxide (ZnO) nanowire networks is presented. By combining ion-track technology, electrochemical deposition, and atomic layer deposition, hierarchical and self-supporting three-dimensional (3D) networks of pure ZnO- and TiO₂-coated ZnO nanowires were synthesized. Analysis by means of high-resolution transmission electron microscopy revealed a highly crystalline structure of the electrodeposited ZnO wires and the anatase phase of the TiO₂ coating. In photoelectrochemical measurements, the ZnO and ZnO/TiO₂ nanowire networks, used as anodes, generated higher photocurrents compared to those produced by their film counterparts. The ZnO/TiO₂ nanowire network exhibited the highest photocurrents. However, the protection by the TiO₂ coatings against chemical corrosion still needs improvement. The one-dimensionality of the nanowires and the large electrolyte-accessible area make these 3D networks promising photoelectrodes, due to the improved transport properties of photogenerated charge carriers and faster redox reactions at the surface. Moreover, they can find further applications in e.g., sensing, catalytical, and piezoelectric devices.</description><subject>core-shell nanowires</subject><subject>electrodeposition</subject><subject>etched ion-track membrane</subject><subject>nanowire network</subject><subject>photoelectrochemical applications</subject><subject>TiO2</subject><subject>water splitting</subject><subject>ZnO</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkd1rVDEQxYMottQ--V7uY0FWJ59381IopWqhtoKK4EvIJpPubXNvtknWsv-90a1lm4fJMOfwm4FDyFsK7znX8GGyU5qDBqX5C7LPoNczoTV9udPvkcNSbqE9Tflc8tdkjwMDkGq-T37-mq67qwZ5GDJ2V1gfUr4rnS3d12WqqQkeuy-txO7bplQcSxdS3ooY0dWc3BLHwdnYna5WsTV1SFN5Q14FGwsePv4H5MfH8-9nn2eX158uzk4vZ06Ivs5YYA68U4oGq8FLRhWAEop5x3WwUjAnFZXSg-DUq-A5c066OaVWKhCUH5CLLdcne2tWeRht3phkB_NvkPKNsbkOLqIRiAyVCsJ5JZgNC-_VAnvR9gRq-0VjnWxZq_ViRO9wqtnGZ9DnyjQszU36bRRVAljfAMePgJzu11iqGYfiMEY7YVoXwygwzilo3azvtlaXUykZw9MaCuZvsmYn2eY-2r3syfs_R_4H78ygnQ</recordid><startdate>20180906</startdate><enddate>20180906</enddate><creator>Movsesyan, Liana</creator><creator>Maijenburg, Albert Wouter</creator><creator>Goethals, Noel</creator><creator>Sigle, Wilfried</creator><creator>Spende, Anne</creator><creator>Yang, Florent</creator><creator>Kaiser, Bernhard</creator><creator>Jaegermann, Wolfram</creator><creator>Park, Sun-Young</creator><creator>Mul, Guido</creator><creator>Trautmann, Christina</creator><creator>Toimil-Molares, Maria Eugenia</creator><general>MDPI</general><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7058-6340</orcidid></search><sort><creationdate>20180906</creationdate><title>ZnO Nanowire Networks as Photoanode Model Systems for Photoelectrochemical Applications</title><author>Movsesyan, Liana ; Maijenburg, Albert Wouter ; Goethals, Noel ; Sigle, Wilfried ; Spende, Anne ; Yang, Florent ; Kaiser, Bernhard ; Jaegermann, Wolfram ; Park, Sun-Young ; Mul, Guido ; Trautmann, Christina ; Toimil-Molares, Maria Eugenia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-2f2c0dc661fa90d5216006462dc39fa542c56155d0431d6fd32cc5c811a560413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>core-shell nanowires</topic><topic>electrodeposition</topic><topic>etched ion-track membrane</topic><topic>nanowire network</topic><topic>photoelectrochemical applications</topic><topic>TiO2</topic><topic>water splitting</topic><topic>ZnO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Movsesyan, Liana</creatorcontrib><creatorcontrib>Maijenburg, Albert Wouter</creatorcontrib><creatorcontrib>Goethals, Noel</creatorcontrib><creatorcontrib>Sigle, Wilfried</creatorcontrib><creatorcontrib>Spende, Anne</creatorcontrib><creatorcontrib>Yang, Florent</creatorcontrib><creatorcontrib>Kaiser, Bernhard</creatorcontrib><creatorcontrib>Jaegermann, Wolfram</creatorcontrib><creatorcontrib>Park, Sun-Young</creatorcontrib><creatorcontrib>Mul, Guido</creatorcontrib><creatorcontrib>Trautmann, Christina</creatorcontrib><creatorcontrib>Toimil-Molares, Maria Eugenia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Movsesyan, Liana</au><au>Maijenburg, Albert Wouter</au><au>Goethals, Noel</au><au>Sigle, Wilfried</au><au>Spende, Anne</au><au>Yang, Florent</au><au>Kaiser, Bernhard</au><au>Jaegermann, Wolfram</au><au>Park, Sun-Young</au><au>Mul, Guido</au><au>Trautmann, Christina</au><au>Toimil-Molares, Maria Eugenia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ZnO Nanowire Networks as Photoanode Model Systems for Photoelectrochemical Applications</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2018-09-06</date><risdate>2018</risdate><volume>8</volume><issue>9</issue><spage>693</spage><pages>693-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>In this work, the fabrication of zinc oxide (ZnO) nanowire networks is presented. By combining ion-track technology, electrochemical deposition, and atomic layer deposition, hierarchical and self-supporting three-dimensional (3D) networks of pure ZnO- and TiO₂-coated ZnO nanowires were synthesized. Analysis by means of high-resolution transmission electron microscopy revealed a highly crystalline structure of the electrodeposited ZnO wires and the anatase phase of the TiO₂ coating. In photoelectrochemical measurements, the ZnO and ZnO/TiO₂ nanowire networks, used as anodes, generated higher photocurrents compared to those produced by their film counterparts. The ZnO/TiO₂ nanowire network exhibited the highest photocurrents. However, the protection by the TiO₂ coatings against chemical corrosion still needs improvement. The one-dimensionality of the nanowires and the large electrolyte-accessible area make these 3D networks promising photoelectrodes, due to the improved transport properties of photogenerated charge carriers and faster redox reactions at the surface. Moreover, they can find further applications in e.g., sensing, catalytical, and piezoelectric devices.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>30200568</pmid><doi>10.3390/nano8090693</doi><orcidid>https://orcid.org/0000-0001-7058-6340</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2018-09, Vol.8 (9), p.693 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4ee2e66f4cd642afbdd6be749faf1a7b |
source | Publicly Available Content Database; IngentaConnect Journals; PubMed Central |
subjects | core-shell nanowires electrodeposition etched ion-track membrane nanowire network photoelectrochemical applications TiO2 water splitting ZnO |
title | ZnO Nanowire Networks as Photoanode Model Systems for Photoelectrochemical Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ZnO%20Nanowire%20Networks%20as%20Photoanode%20Model%20Systems%20for%20Photoelectrochemical%20Applications&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Movsesyan,%20Liana&rft.date=2018-09-06&rft.volume=8&rft.issue=9&rft.spage=693&rft.pages=693-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano8090693&rft_dat=%3Cproquest_doaj_%3E2102331099%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-2f2c0dc661fa90d5216006462dc39fa542c56155d0431d6fd32cc5c811a560413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2102331099&rft_id=info:pmid/30200568&rfr_iscdi=true |