Loading…

ZnO Nanowire Networks as Photoanode Model Systems for Photoelectrochemical Applications

In this work, the fabrication of zinc oxide (ZnO) nanowire networks is presented. By combining ion-track technology, electrochemical deposition, and atomic layer deposition, hierarchical and self-supporting three-dimensional (3D) networks of pure ZnO- and TiO₂-coated ZnO nanowires were synthesized....

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2018-09, Vol.8 (9), p.693
Main Authors: Movsesyan, Liana, Maijenburg, Albert Wouter, Goethals, Noel, Sigle, Wilfried, Spende, Anne, Yang, Florent, Kaiser, Bernhard, Jaegermann, Wolfram, Park, Sun-Young, Mul, Guido, Trautmann, Christina, Toimil-Molares, Maria Eugenia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-2f2c0dc661fa90d5216006462dc39fa542c56155d0431d6fd32cc5c811a560413
cites cdi_FETCH-LOGICAL-c447t-2f2c0dc661fa90d5216006462dc39fa542c56155d0431d6fd32cc5c811a560413
container_end_page
container_issue 9
container_start_page 693
container_title Nanomaterials (Basel, Switzerland)
container_volume 8
creator Movsesyan, Liana
Maijenburg, Albert Wouter
Goethals, Noel
Sigle, Wilfried
Spende, Anne
Yang, Florent
Kaiser, Bernhard
Jaegermann, Wolfram
Park, Sun-Young
Mul, Guido
Trautmann, Christina
Toimil-Molares, Maria Eugenia
description In this work, the fabrication of zinc oxide (ZnO) nanowire networks is presented. By combining ion-track technology, electrochemical deposition, and atomic layer deposition, hierarchical and self-supporting three-dimensional (3D) networks of pure ZnO- and TiO₂-coated ZnO nanowires were synthesized. Analysis by means of high-resolution transmission electron microscopy revealed a highly crystalline structure of the electrodeposited ZnO wires and the anatase phase of the TiO₂ coating. In photoelectrochemical measurements, the ZnO and ZnO/TiO₂ nanowire networks, used as anodes, generated higher photocurrents compared to those produced by their film counterparts. The ZnO/TiO₂ nanowire network exhibited the highest photocurrents. However, the protection by the TiO₂ coatings against chemical corrosion still needs improvement. The one-dimensionality of the nanowires and the large electrolyte-accessible area make these 3D networks promising photoelectrodes, due to the improved transport properties of photogenerated charge carriers and faster redox reactions at the surface. Moreover, they can find further applications in e.g., sensing, catalytical, and piezoelectric devices.
doi_str_mv 10.3390/nano8090693
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4ee2e66f4cd642afbdd6be749faf1a7b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4ee2e66f4cd642afbdd6be749faf1a7b</doaj_id><sourcerecordid>2102331099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-2f2c0dc661fa90d5216006462dc39fa542c56155d0431d6fd32cc5c811a560413</originalsourceid><addsrcrecordid>eNpVkd1rVDEQxYMottQ--V7uY0FWJ59381IopWqhtoKK4EvIJpPubXNvtknWsv-90a1lm4fJMOfwm4FDyFsK7znX8GGyU5qDBqX5C7LPoNczoTV9udPvkcNSbqE9Tflc8tdkjwMDkGq-T37-mq67qwZ5GDJ2V1gfUr4rnS3d12WqqQkeuy-txO7bplQcSxdS3ooY0dWc3BLHwdnYna5WsTV1SFN5Q14FGwsePv4H5MfH8-9nn2eX158uzk4vZ06Ivs5YYA68U4oGq8FLRhWAEop5x3WwUjAnFZXSg-DUq-A5c066OaVWKhCUH5CLLdcne2tWeRht3phkB_NvkPKNsbkOLqIRiAyVCsJ5JZgNC-_VAnvR9gRq-0VjnWxZq_ViRO9wqtnGZ9DnyjQszU36bRRVAljfAMePgJzu11iqGYfiMEY7YVoXwygwzilo3azvtlaXUykZw9MaCuZvsmYn2eY-2r3syfs_R_4H78ygnQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102331099</pqid></control><display><type>article</type><title>ZnO Nanowire Networks as Photoanode Model Systems for Photoelectrochemical Applications</title><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><source>PubMed Central</source><creator>Movsesyan, Liana ; Maijenburg, Albert Wouter ; Goethals, Noel ; Sigle, Wilfried ; Spende, Anne ; Yang, Florent ; Kaiser, Bernhard ; Jaegermann, Wolfram ; Park, Sun-Young ; Mul, Guido ; Trautmann, Christina ; Toimil-Molares, Maria Eugenia</creator><creatorcontrib>Movsesyan, Liana ; Maijenburg, Albert Wouter ; Goethals, Noel ; Sigle, Wilfried ; Spende, Anne ; Yang, Florent ; Kaiser, Bernhard ; Jaegermann, Wolfram ; Park, Sun-Young ; Mul, Guido ; Trautmann, Christina ; Toimil-Molares, Maria Eugenia</creatorcontrib><description>In this work, the fabrication of zinc oxide (ZnO) nanowire networks is presented. By combining ion-track technology, electrochemical deposition, and atomic layer deposition, hierarchical and self-supporting three-dimensional (3D) networks of pure ZnO- and TiO₂-coated ZnO nanowires were synthesized. Analysis by means of high-resolution transmission electron microscopy revealed a highly crystalline structure of the electrodeposited ZnO wires and the anatase phase of the TiO₂ coating. In photoelectrochemical measurements, the ZnO and ZnO/TiO₂ nanowire networks, used as anodes, generated higher photocurrents compared to those produced by their film counterparts. The ZnO/TiO₂ nanowire network exhibited the highest photocurrents. However, the protection by the TiO₂ coatings against chemical corrosion still needs improvement. The one-dimensionality of the nanowires and the large electrolyte-accessible area make these 3D networks promising photoelectrodes, due to the improved transport properties of photogenerated charge carriers and faster redox reactions at the surface. Moreover, they can find further applications in e.g., sensing, catalytical, and piezoelectric devices.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano8090693</identifier><identifier>PMID: 30200568</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>core-shell nanowires ; electrodeposition ; etched ion-track membrane ; nanowire network ; photoelectrochemical applications ; TiO2 ; water splitting ; ZnO</subject><ispartof>Nanomaterials (Basel, Switzerland), 2018-09, Vol.8 (9), p.693</ispartof><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-2f2c0dc661fa90d5216006462dc39fa542c56155d0431d6fd32cc5c811a560413</citedby><cites>FETCH-LOGICAL-c447t-2f2c0dc661fa90d5216006462dc39fa542c56155d0431d6fd32cc5c811a560413</cites><orcidid>0000-0001-7058-6340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164027/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164027/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,37012,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30200568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Movsesyan, Liana</creatorcontrib><creatorcontrib>Maijenburg, Albert Wouter</creatorcontrib><creatorcontrib>Goethals, Noel</creatorcontrib><creatorcontrib>Sigle, Wilfried</creatorcontrib><creatorcontrib>Spende, Anne</creatorcontrib><creatorcontrib>Yang, Florent</creatorcontrib><creatorcontrib>Kaiser, Bernhard</creatorcontrib><creatorcontrib>Jaegermann, Wolfram</creatorcontrib><creatorcontrib>Park, Sun-Young</creatorcontrib><creatorcontrib>Mul, Guido</creatorcontrib><creatorcontrib>Trautmann, Christina</creatorcontrib><creatorcontrib>Toimil-Molares, Maria Eugenia</creatorcontrib><title>ZnO Nanowire Networks as Photoanode Model Systems for Photoelectrochemical Applications</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>In this work, the fabrication of zinc oxide (ZnO) nanowire networks is presented. By combining ion-track technology, electrochemical deposition, and atomic layer deposition, hierarchical and self-supporting three-dimensional (3D) networks of pure ZnO- and TiO₂-coated ZnO nanowires were synthesized. Analysis by means of high-resolution transmission electron microscopy revealed a highly crystalline structure of the electrodeposited ZnO wires and the anatase phase of the TiO₂ coating. In photoelectrochemical measurements, the ZnO and ZnO/TiO₂ nanowire networks, used as anodes, generated higher photocurrents compared to those produced by their film counterparts. The ZnO/TiO₂ nanowire network exhibited the highest photocurrents. However, the protection by the TiO₂ coatings against chemical corrosion still needs improvement. The one-dimensionality of the nanowires and the large electrolyte-accessible area make these 3D networks promising photoelectrodes, due to the improved transport properties of photogenerated charge carriers and faster redox reactions at the surface. Moreover, they can find further applications in e.g., sensing, catalytical, and piezoelectric devices.</description><subject>core-shell nanowires</subject><subject>electrodeposition</subject><subject>etched ion-track membrane</subject><subject>nanowire network</subject><subject>photoelectrochemical applications</subject><subject>TiO2</subject><subject>water splitting</subject><subject>ZnO</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkd1rVDEQxYMottQ--V7uY0FWJ59381IopWqhtoKK4EvIJpPubXNvtknWsv-90a1lm4fJMOfwm4FDyFsK7znX8GGyU5qDBqX5C7LPoNczoTV9udPvkcNSbqE9Tflc8tdkjwMDkGq-T37-mq67qwZ5GDJ2V1gfUr4rnS3d12WqqQkeuy-txO7bplQcSxdS3ooY0dWc3BLHwdnYna5WsTV1SFN5Q14FGwsePv4H5MfH8-9nn2eX158uzk4vZ06Ivs5YYA68U4oGq8FLRhWAEop5x3WwUjAnFZXSg-DUq-A5c066OaVWKhCUH5CLLdcne2tWeRht3phkB_NvkPKNsbkOLqIRiAyVCsJ5JZgNC-_VAnvR9gRq-0VjnWxZq_ViRO9wqtnGZ9DnyjQszU36bRRVAljfAMePgJzu11iqGYfiMEY7YVoXwygwzilo3azvtlaXUykZw9MaCuZvsmYn2eY-2r3syfs_R_4H78ygnQ</recordid><startdate>20180906</startdate><enddate>20180906</enddate><creator>Movsesyan, Liana</creator><creator>Maijenburg, Albert Wouter</creator><creator>Goethals, Noel</creator><creator>Sigle, Wilfried</creator><creator>Spende, Anne</creator><creator>Yang, Florent</creator><creator>Kaiser, Bernhard</creator><creator>Jaegermann, Wolfram</creator><creator>Park, Sun-Young</creator><creator>Mul, Guido</creator><creator>Trautmann, Christina</creator><creator>Toimil-Molares, Maria Eugenia</creator><general>MDPI</general><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7058-6340</orcidid></search><sort><creationdate>20180906</creationdate><title>ZnO Nanowire Networks as Photoanode Model Systems for Photoelectrochemical Applications</title><author>Movsesyan, Liana ; Maijenburg, Albert Wouter ; Goethals, Noel ; Sigle, Wilfried ; Spende, Anne ; Yang, Florent ; Kaiser, Bernhard ; Jaegermann, Wolfram ; Park, Sun-Young ; Mul, Guido ; Trautmann, Christina ; Toimil-Molares, Maria Eugenia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-2f2c0dc661fa90d5216006462dc39fa542c56155d0431d6fd32cc5c811a560413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>core-shell nanowires</topic><topic>electrodeposition</topic><topic>etched ion-track membrane</topic><topic>nanowire network</topic><topic>photoelectrochemical applications</topic><topic>TiO2</topic><topic>water splitting</topic><topic>ZnO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Movsesyan, Liana</creatorcontrib><creatorcontrib>Maijenburg, Albert Wouter</creatorcontrib><creatorcontrib>Goethals, Noel</creatorcontrib><creatorcontrib>Sigle, Wilfried</creatorcontrib><creatorcontrib>Spende, Anne</creatorcontrib><creatorcontrib>Yang, Florent</creatorcontrib><creatorcontrib>Kaiser, Bernhard</creatorcontrib><creatorcontrib>Jaegermann, Wolfram</creatorcontrib><creatorcontrib>Park, Sun-Young</creatorcontrib><creatorcontrib>Mul, Guido</creatorcontrib><creatorcontrib>Trautmann, Christina</creatorcontrib><creatorcontrib>Toimil-Molares, Maria Eugenia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Movsesyan, Liana</au><au>Maijenburg, Albert Wouter</au><au>Goethals, Noel</au><au>Sigle, Wilfried</au><au>Spende, Anne</au><au>Yang, Florent</au><au>Kaiser, Bernhard</au><au>Jaegermann, Wolfram</au><au>Park, Sun-Young</au><au>Mul, Guido</au><au>Trautmann, Christina</au><au>Toimil-Molares, Maria Eugenia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ZnO Nanowire Networks as Photoanode Model Systems for Photoelectrochemical Applications</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2018-09-06</date><risdate>2018</risdate><volume>8</volume><issue>9</issue><spage>693</spage><pages>693-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>In this work, the fabrication of zinc oxide (ZnO) nanowire networks is presented. By combining ion-track technology, electrochemical deposition, and atomic layer deposition, hierarchical and self-supporting three-dimensional (3D) networks of pure ZnO- and TiO₂-coated ZnO nanowires were synthesized. Analysis by means of high-resolution transmission electron microscopy revealed a highly crystalline structure of the electrodeposited ZnO wires and the anatase phase of the TiO₂ coating. In photoelectrochemical measurements, the ZnO and ZnO/TiO₂ nanowire networks, used as anodes, generated higher photocurrents compared to those produced by their film counterparts. The ZnO/TiO₂ nanowire network exhibited the highest photocurrents. However, the protection by the TiO₂ coatings against chemical corrosion still needs improvement. The one-dimensionality of the nanowires and the large electrolyte-accessible area make these 3D networks promising photoelectrodes, due to the improved transport properties of photogenerated charge carriers and faster redox reactions at the surface. Moreover, they can find further applications in e.g., sensing, catalytical, and piezoelectric devices.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>30200568</pmid><doi>10.3390/nano8090693</doi><orcidid>https://orcid.org/0000-0001-7058-6340</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2018-09, Vol.8 (9), p.693
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4ee2e66f4cd642afbdd6be749faf1a7b
source Publicly Available Content Database; IngentaConnect Journals; PubMed Central
subjects core-shell nanowires
electrodeposition
etched ion-track membrane
nanowire network
photoelectrochemical applications
TiO2
water splitting
ZnO
title ZnO Nanowire Networks as Photoanode Model Systems for Photoelectrochemical Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ZnO%20Nanowire%20Networks%20as%20Photoanode%20Model%20Systems%20for%20Photoelectrochemical%20Applications&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Movsesyan,%20Liana&rft.date=2018-09-06&rft.volume=8&rft.issue=9&rft.spage=693&rft.pages=693-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano8090693&rft_dat=%3Cproquest_doaj_%3E2102331099%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-2f2c0dc661fa90d5216006462dc39fa542c56155d0431d6fd32cc5c811a560413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2102331099&rft_id=info:pmid/30200568&rfr_iscdi=true