Loading…

A Novel Adaptive Manta-Ray Foraging Optimization for Stochastic ORPD Considering Uncertainties of Wind Power and Load Demand

The optimal control of reactive powers in electrical systems can improve a system’s performance and security; this can be provided by the optimal reactive power dispatch (ORPD). Under the high penetration of renewable energy resources (RERs) such as wind turbines (WTs), the ORPD problem solution has...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2023-06, Vol.11 (11), p.2591
Main Authors: Almutairi, Sulaiman Z., Mohamed, Emad A., El-Sousy, Fayez F. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The optimal control of reactive powers in electrical systems can improve a system’s performance and security; this can be provided by the optimal reactive power dispatch (ORPD). Under the high penetration of renewable energy resources (RERs) such as wind turbines (WTs), the ORPD problem solution has become a challenging and complex task due to the fluctuations and uncertainties of generated power from WTs. In this regard, this paper solved the conventional ORPD and the stochastic ORPD (SORPD) at uncertainties of the generated power from WTs and the load demand. An Adaptive Manta-Ray Foraging Optimization (AMRFO) was presented based on three modifications, including the fitness distance balance selection (FDB), Quasi Oppositional based learning (QOBL), and an adaptive Levy Flight (ALF). The ORPD and SORPD were solved to reduce the power loss (PLoss) and the total expected PLoss (TEPL), the voltage deviations (VD) and the total expected VD (TEVD). The normal and Weibull probability density functions (PDFs), along with the scenario reduction method and the Monte Carlo simulation (MCS), were utilized for uncertainty representations. The performance and validity of the suggested AMRFO were compared to other optimizers, including SCSO, WOA, DO, AHA, and the conventional MRFO on the IEEE 30-bus system and standard benchmark functions. These simulation results confirm the supremacy of the suggested AMRFO for the ORPD and SORPD solution compared to the other reported techniques.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11112591