Loading…

Carbon (δ 13 C) and Nitrogen (δ 15 N) Stable Isotope Composition Provide New Insights into Phenotypic Plasticity in Broad Leaf Weed Rumex acetosa under Allelochemical Stress

Phenolic compounds, hydroquinone and cinnamic acid derivatives have been identified as major allelochemicals with known phytotoxicity from allelopathic plant R. Br. Several phenolic compounds such as ferulic acid (FA), -hydroxybenzoic acid (pHBA) and flavonoid (rutin, quercetin) constituents occur i...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2018-09, Vol.23 (10), p.2449
Main Authors: Hussain, M Iftikhar, Reigosa, Manuel J, Muscolo, Adele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phenolic compounds, hydroquinone and cinnamic acid derivatives have been identified as major allelochemicals with known phytotoxicity from allelopathic plant R. Br. Several phenolic compounds such as ferulic acid (FA), -hydroxybenzoic acid (pHBA) and flavonoid (rutin, quercetin) constituents occur in the phyllodes and flowers of and have demonstrated inhibitory effects on germination and physiological characteristics of lettuce and perennial grasses. However, to date, little is known about the mechanisms of action of these secondary metabolites in broad-leaved weeds at ecophysiological level. The objective of this study was to determine the response of carbon isotope composition and other physiological parameters to the interaction of plant secondary metabolites (PSM) (FA and pHBA) stress and the usefulness of carbon isotope discrimination (Δ C) as indicative of the functional performance of intrinsic water use efficiency (iWUE) at level of plant leaf. plant were grown under greenhouse condition and subjected to PSM stress (0, 0.1, 0.5, 1.0, and 1.5 mM) for six days. Here, we show that FA and pHBA are potent inhibitors of Δ C that varied from 21.0‰ to 22.9‰. Higher pHBA and FA supply enhanced/retard the N and increased the C while ratio of intercellular CO₂ concentration from leaf to air ( i/ a) was significantly decreased as compared to control. Leaf water content and leaf osmotic potential were decreased following treatment with both PSM. The i/ a decreased rapidly with higher concentration of FA and pHBA. However, iWUE increased at all allelochemical concentrations. At the whole plant level, both PSM showed pronounced growth-inhibitory effects on PBM and C and N concentration, root fresh/dry weight, leaf fresh/dry weight, and root, shoot length of C₃ broad leaf weed . Carbon isotope discrimination (Δ) was correlated with the dry matter to transpiration ratio (transpiration efficiency) in this C₃ species, but its heritability and relationship to growth are less clear. Our FA and pHBA compounds are the potent and selective carbon isotope composition (δ C) inhibitors known to date. These results confirm the phytotoxicity of FA and pHBA on seedlings, the reduction of relative water content and the induction of carbon isotope discrimination (Δ) with lower plant biomass.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules23102449