Loading…

Novel Method for Identifying Fault Location of Mixed Lines

The identification and localization of a fault are a basic requirement for optimal operation of a modern power system. An effective fault identification method significantly reduces outage time, improves the electrical supply reliability, and enhances the speed of protection control. This paper prop...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2018-06, Vol.11 (6), p.1529
Main Authors: Wang, Lei, Liu, Hui, Dai, Le, Liu, Yuwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The identification and localization of a fault are a basic requirement for optimal operation of a modern power system. An effective fault identification method significantly reduces outage time, improves the electrical supply reliability, and enhances the speed of protection control. This paper proposes a novel method based on the theory of the two-terminal traveling wave range to identify the fault location in a voltage source converter based high voltage direct current (VSC-HVDC) system containing mixed cable and overhead line segments. It uses variational mode decomposition (VMD) and the Teager energy operator (TEO) as a new method to detect the traveling wave fault through a fault signal. The effectiveness of the proposed method is verified via time domain simulation of the hybrid VSC-HVDC transmission system using PSCAD/EMTDC and MATLAB software. Simulation results show that the proposed method demonstrates high fault location accuracy and excellent robustness with a slight effect on transient resistance and fault types, and that it performs better than the existing transient detection techniques, such as wavelet transform and ensemble empirical mode decomposition.
ISSN:1996-1073
1996-1073
DOI:10.3390/en11061529