Loading…

Thermophilic Talaromyces emersonii Flavin Adenine Dinucleotide-Dependent Glucose Dehydrogenase Bioanode for Biosensor and Biofuel Cell Applications

Flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase (GDH) was identified and cloned from thermophilic filamentous fungi Talaromyces emersonii using the homology cloning method. A direct electron transfer bioanode composed of T. emersonii FAD-GDH and a single-walled carbon nanotube was...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2017-04, Vol.2 (4), p.1660-1665
Main Authors: Iwasa, Hisanori, Hiratsuka, Atsunori, Yokoyama, Kenji, Uzawa, Hirotaka, Orihara, Kouhei, Muguruma, Hitoshi
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase (GDH) was identified and cloned from thermophilic filamentous fungi Talaromyces emersonii using the homology cloning method. A direct electron transfer bioanode composed of T. emersonii FAD-GDH and a single-walled carbon nanotube was produced. Enzymes from thermophilic microorganisms generally have low activity at ambient temperature; however, the T. emersonii FAD-GDH bioanode exhibits a large anodic current due to the enzymatic reaction (1 mA cm–2) at ambient temperature. Furthermore, the T. emersonii FAD-GDH bioanode worked at 70 °C for 12 h. This is the first report of a bioanode with a glucose-catalyzing enzyme from a thermophilic microorganism that has potential for biosensor and biofuel cell applications. In addition, we demonstrate how the glycoforms of T. emersonii FAD-GDHs expressed by various hosts influence the electrochemical properties of the bioanode.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.7b00277