Loading…
Numerical and Parametric Analysis for Enhancing Performances of Water Photovoltaic/Thermal System
Photovoltaic/thermal (PV/T) systems are innovative cogeneration systems that ensure the cooling of photovoltaic (PV) backside and simultaneous production of electricity and heat. However, an effective cooling of the PV back is still a challenge that affects electrical and thermal performance of the...
Saved in:
Published in: | Applied sciences 2022-01, Vol.12 (2), p.646 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-3f93e4be17269fd9546554f1e31af6db9d57e115c82d6c4b851a3cf15483a57f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-3f93e4be17269fd9546554f1e31af6db9d57e115c82d6c4b851a3cf15483a57f3 |
container_end_page | |
container_issue | 2 |
container_start_page | 646 |
container_title | Applied sciences |
container_volume | 12 |
creator | El Fouas, Chaimae Cherecheș, Nelu Cristian Hudișteanu, Sebastian Valeriu Hajji, Bekkay Țurcanu, Emilian Florin Cherecheș, Monica Lilioara |
description | Photovoltaic/thermal (PV/T) systems are innovative cogeneration systems that ensure the cooling of photovoltaic (PV) backside and simultaneous production of electricity and heat. However, an effective cooling of the PV back is still a challenge that affects electrical and thermal performance of the PV/T system. In the present work, a PV/T numerical model is developed to simulate the heat flux based on energy balance implemented in MATLAB software. The numerical model is validated through the comparison of the three-layer PV model with the NOCT model and tested under the operation conditions of continental temperate climate. Moreover, the effect of velocity and water film thickness as important flow parameters on heat exchange and PV/T production is numerically investigated. Results revealed that the PV model is in good agreement with the NOCT one. An efficient heat transfer is obtained while increasing the velocity and water film thickness with optimal values of 0.035 m/s and 7 mm, respectively, at an inlet temperature of 20 °C. The PV/T system ensures a maximum thermal power of 1334.5 W and electrical power of 316.56 W (258.8 W for the PV). Finally, the comparison between the PV and PV/T system under real weather conditions showed the advantage of using the PV/T. |
doi_str_mv | 10.3390/app12020646 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4f24c210c1a1440bad79ba46696602ea</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4f24c210c1a1440bad79ba46696602ea</doaj_id><sourcerecordid>2621271725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-3f93e4be17269fd9546554f1e31af6db9d57e115c82d6c4b851a3cf15483a57f3</originalsourceid><addsrcrecordid>eNpNUU1LxDAQLaLgop78AwGPUjeTr7ZHWfwC0QUVj2GaJm6XtqlJV9h_b3RFdi4z83i8N8zLsnOgV5xXdI7jCIwyqoQ6yGaMFirnAorDvfk4O4txTVNVwEugswyfNr0NrcGO4NCQJQbs7ZQAcj1gt41tJM4HcjOscDDt8EGWNiSgT5uNxDvyjpMNZLnyk__y3YStmb-ubCJ05GUbJ9ufZkcOu2jP_vpJ9nZ787q4zx-f7x4W14-54UpMOXcVt6K2UDBVuaaSQkkpHFgO6FRTV40sLIA0JWuUEXUpAblxIEXJURaOn2QPO93G41qPoe0xbLXHVv8CPnxoDFNrOquFY8IwoAYQhKA1NkVVo1CqUooyi0nrYqc1Bv-5sXHSa78J6SFRM8WAFelKmViXO5YJPsZg3b8rUP0Tid6LhH8DyoR9-Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621271725</pqid></control><display><type>article</type><title>Numerical and Parametric Analysis for Enhancing Performances of Water Photovoltaic/Thermal System</title><source>Publicly Available Content Database</source><creator>El Fouas, Chaimae ; Cherecheș, Nelu Cristian ; Hudișteanu, Sebastian Valeriu ; Hajji, Bekkay ; Țurcanu, Emilian Florin ; Cherecheș, Monica Lilioara</creator><creatorcontrib>El Fouas, Chaimae ; Cherecheș, Nelu Cristian ; Hudișteanu, Sebastian Valeriu ; Hajji, Bekkay ; Țurcanu, Emilian Florin ; Cherecheș, Monica Lilioara</creatorcontrib><description>Photovoltaic/thermal (PV/T) systems are innovative cogeneration systems that ensure the cooling of photovoltaic (PV) backside and simultaneous production of electricity and heat. However, an effective cooling of the PV back is still a challenge that affects electrical and thermal performance of the PV/T system. In the present work, a PV/T numerical model is developed to simulate the heat flux based on energy balance implemented in MATLAB software. The numerical model is validated through the comparison of the three-layer PV model with the NOCT model and tested under the operation conditions of continental temperate climate. Moreover, the effect of velocity and water film thickness as important flow parameters on heat exchange and PV/T production is numerically investigated. Results revealed that the PV model is in good agreement with the NOCT one. An efficient heat transfer is obtained while increasing the velocity and water film thickness with optimal values of 0.035 m/s and 7 mm, respectively, at an inlet temperature of 20 °C. The PV/T system ensures a maximum thermal power of 1334.5 W and electrical power of 316.56 W (258.8 W for the PV). Finally, the comparison between the PV and PV/T system under real weather conditions showed the advantage of using the PV/T.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app12020646</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Aluminum ; Cogeneration ; Cooling ; Efficiency ; Electric power ; electrical efficiency ; Electricity ; Energy balance ; Film thickness ; Heat conductivity ; Heat flux ; Heat transfer ; Inlet temperature ; Mathematical models ; Numerical analysis ; numerical model ; Numerical models ; Parametric analysis ; Parametric statistics ; Photovoltaic cells ; photovoltaic thermal system ; Photovoltaics ; Radiation ; Renewable resources ; solar energy ; thermal efficiency ; Thermal power ; Velocity ; water cooling ; Water film ; Weather</subject><ispartof>Applied sciences, 2022-01, Vol.12 (2), p.646</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-3f93e4be17269fd9546554f1e31af6db9d57e115c82d6c4b851a3cf15483a57f3</citedby><cites>FETCH-LOGICAL-c364t-3f93e4be17269fd9546554f1e31af6db9d57e115c82d6c4b851a3cf15483a57f3</cites><orcidid>0000-0002-6704-3123 ; 0000-0001-7944-7275 ; 0000-0002-9678-5708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2621271725/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2621271725?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>El Fouas, Chaimae</creatorcontrib><creatorcontrib>Cherecheș, Nelu Cristian</creatorcontrib><creatorcontrib>Hudișteanu, Sebastian Valeriu</creatorcontrib><creatorcontrib>Hajji, Bekkay</creatorcontrib><creatorcontrib>Țurcanu, Emilian Florin</creatorcontrib><creatorcontrib>Cherecheș, Monica Lilioara</creatorcontrib><title>Numerical and Parametric Analysis for Enhancing Performances of Water Photovoltaic/Thermal System</title><title>Applied sciences</title><description>Photovoltaic/thermal (PV/T) systems are innovative cogeneration systems that ensure the cooling of photovoltaic (PV) backside and simultaneous production of electricity and heat. However, an effective cooling of the PV back is still a challenge that affects electrical and thermal performance of the PV/T system. In the present work, a PV/T numerical model is developed to simulate the heat flux based on energy balance implemented in MATLAB software. The numerical model is validated through the comparison of the three-layer PV model with the NOCT model and tested under the operation conditions of continental temperate climate. Moreover, the effect of velocity and water film thickness as important flow parameters on heat exchange and PV/T production is numerically investigated. Results revealed that the PV model is in good agreement with the NOCT one. An efficient heat transfer is obtained while increasing the velocity and water film thickness with optimal values of 0.035 m/s and 7 mm, respectively, at an inlet temperature of 20 °C. The PV/T system ensures a maximum thermal power of 1334.5 W and electrical power of 316.56 W (258.8 W for the PV). Finally, the comparison between the PV and PV/T system under real weather conditions showed the advantage of using the PV/T.</description><subject>Alternative energy sources</subject><subject>Aluminum</subject><subject>Cogeneration</subject><subject>Cooling</subject><subject>Efficiency</subject><subject>Electric power</subject><subject>electrical efficiency</subject><subject>Electricity</subject><subject>Energy balance</subject><subject>Film thickness</subject><subject>Heat conductivity</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Inlet temperature</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>numerical model</subject><subject>Numerical models</subject><subject>Parametric analysis</subject><subject>Parametric statistics</subject><subject>Photovoltaic cells</subject><subject>photovoltaic thermal system</subject><subject>Photovoltaics</subject><subject>Radiation</subject><subject>Renewable resources</subject><subject>solar energy</subject><subject>thermal efficiency</subject><subject>Thermal power</subject><subject>Velocity</subject><subject>water cooling</subject><subject>Water film</subject><subject>Weather</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LxDAQLaLgop78AwGPUjeTr7ZHWfwC0QUVj2GaJm6XtqlJV9h_b3RFdi4z83i8N8zLsnOgV5xXdI7jCIwyqoQ6yGaMFirnAorDvfk4O4txTVNVwEugswyfNr0NrcGO4NCQJQbs7ZQAcj1gt41tJM4HcjOscDDt8EGWNiSgT5uNxDvyjpMNZLnyk__y3YStmb-ubCJ05GUbJ9ufZkcOu2jP_vpJ9nZ787q4zx-f7x4W14-54UpMOXcVt6K2UDBVuaaSQkkpHFgO6FRTV40sLIA0JWuUEXUpAblxIEXJURaOn2QPO93G41qPoe0xbLXHVv8CPnxoDFNrOquFY8IwoAYQhKA1NkVVo1CqUooyi0nrYqc1Bv-5sXHSa78J6SFRM8WAFelKmViXO5YJPsZg3b8rUP0Tid6LhH8DyoR9-Q</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>El Fouas, Chaimae</creator><creator>Cherecheș, Nelu Cristian</creator><creator>Hudișteanu, Sebastian Valeriu</creator><creator>Hajji, Bekkay</creator><creator>Țurcanu, Emilian Florin</creator><creator>Cherecheș, Monica Lilioara</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6704-3123</orcidid><orcidid>https://orcid.org/0000-0001-7944-7275</orcidid><orcidid>https://orcid.org/0000-0002-9678-5708</orcidid></search><sort><creationdate>20220101</creationdate><title>Numerical and Parametric Analysis for Enhancing Performances of Water Photovoltaic/Thermal System</title><author>El Fouas, Chaimae ; Cherecheș, Nelu Cristian ; Hudișteanu, Sebastian Valeriu ; Hajji, Bekkay ; Țurcanu, Emilian Florin ; Cherecheș, Monica Lilioara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-3f93e4be17269fd9546554f1e31af6db9d57e115c82d6c4b851a3cf15483a57f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative energy sources</topic><topic>Aluminum</topic><topic>Cogeneration</topic><topic>Cooling</topic><topic>Efficiency</topic><topic>Electric power</topic><topic>electrical efficiency</topic><topic>Electricity</topic><topic>Energy balance</topic><topic>Film thickness</topic><topic>Heat conductivity</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Inlet temperature</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>numerical model</topic><topic>Numerical models</topic><topic>Parametric analysis</topic><topic>Parametric statistics</topic><topic>Photovoltaic cells</topic><topic>photovoltaic thermal system</topic><topic>Photovoltaics</topic><topic>Radiation</topic><topic>Renewable resources</topic><topic>solar energy</topic><topic>thermal efficiency</topic><topic>Thermal power</topic><topic>Velocity</topic><topic>water cooling</topic><topic>Water film</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Fouas, Chaimae</creatorcontrib><creatorcontrib>Cherecheș, Nelu Cristian</creatorcontrib><creatorcontrib>Hudișteanu, Sebastian Valeriu</creatorcontrib><creatorcontrib>Hajji, Bekkay</creatorcontrib><creatorcontrib>Țurcanu, Emilian Florin</creatorcontrib><creatorcontrib>Cherecheș, Monica Lilioara</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Fouas, Chaimae</au><au>Cherecheș, Nelu Cristian</au><au>Hudișteanu, Sebastian Valeriu</au><au>Hajji, Bekkay</au><au>Țurcanu, Emilian Florin</au><au>Cherecheș, Monica Lilioara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical and Parametric Analysis for Enhancing Performances of Water Photovoltaic/Thermal System</atitle><jtitle>Applied sciences</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>12</volume><issue>2</issue><spage>646</spage><pages>646-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Photovoltaic/thermal (PV/T) systems are innovative cogeneration systems that ensure the cooling of photovoltaic (PV) backside and simultaneous production of electricity and heat. However, an effective cooling of the PV back is still a challenge that affects electrical and thermal performance of the PV/T system. In the present work, a PV/T numerical model is developed to simulate the heat flux based on energy balance implemented in MATLAB software. The numerical model is validated through the comparison of the three-layer PV model with the NOCT model and tested under the operation conditions of continental temperate climate. Moreover, the effect of velocity and water film thickness as important flow parameters on heat exchange and PV/T production is numerically investigated. Results revealed that the PV model is in good agreement with the NOCT one. An efficient heat transfer is obtained while increasing the velocity and water film thickness with optimal values of 0.035 m/s and 7 mm, respectively, at an inlet temperature of 20 °C. The PV/T system ensures a maximum thermal power of 1334.5 W and electrical power of 316.56 W (258.8 W for the PV). Finally, the comparison between the PV and PV/T system under real weather conditions showed the advantage of using the PV/T.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app12020646</doi><orcidid>https://orcid.org/0000-0002-6704-3123</orcidid><orcidid>https://orcid.org/0000-0001-7944-7275</orcidid><orcidid>https://orcid.org/0000-0002-9678-5708</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2022-01, Vol.12 (2), p.646 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4f24c210c1a1440bad79ba46696602ea |
source | Publicly Available Content Database |
subjects | Alternative energy sources Aluminum Cogeneration Cooling Efficiency Electric power electrical efficiency Electricity Energy balance Film thickness Heat conductivity Heat flux Heat transfer Inlet temperature Mathematical models Numerical analysis numerical model Numerical models Parametric analysis Parametric statistics Photovoltaic cells photovoltaic thermal system Photovoltaics Radiation Renewable resources solar energy thermal efficiency Thermal power Velocity water cooling Water film Weather |
title | Numerical and Parametric Analysis for Enhancing Performances of Water Photovoltaic/Thermal System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20and%20Parametric%20Analysis%20for%20Enhancing%20Performances%20of%20Water%20Photovoltaic/Thermal%20System&rft.jtitle=Applied%20sciences&rft.au=El%20Fouas,%20Chaimae&rft.date=2022-01-01&rft.volume=12&rft.issue=2&rft.spage=646&rft.pages=646-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app12020646&rft_dat=%3Cproquest_doaj_%3E2621271725%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-3f93e4be17269fd9546554f1e31af6db9d57e115c82d6c4b851a3cf15483a57f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621271725&rft_id=info:pmid/&rfr_iscdi=true |