Loading…

Numerical and Parametric Analysis for Enhancing Performances of Water Photovoltaic/Thermal System

Photovoltaic/thermal (PV/T) systems are innovative cogeneration systems that ensure the cooling of photovoltaic (PV) backside and simultaneous production of electricity and heat. However, an effective cooling of the PV back is still a challenge that affects electrical and thermal performance of the...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2022-01, Vol.12 (2), p.646
Main Authors: El Fouas, Chaimae, Cherecheș, Nelu Cristian, Hudișteanu, Sebastian Valeriu, Hajji, Bekkay, Țurcanu, Emilian Florin, Cherecheș, Monica Lilioara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-3f93e4be17269fd9546554f1e31af6db9d57e115c82d6c4b851a3cf15483a57f3
cites cdi_FETCH-LOGICAL-c364t-3f93e4be17269fd9546554f1e31af6db9d57e115c82d6c4b851a3cf15483a57f3
container_end_page
container_issue 2
container_start_page 646
container_title Applied sciences
container_volume 12
creator El Fouas, Chaimae
Cherecheș, Nelu Cristian
Hudișteanu, Sebastian Valeriu
Hajji, Bekkay
Țurcanu, Emilian Florin
Cherecheș, Monica Lilioara
description Photovoltaic/thermal (PV/T) systems are innovative cogeneration systems that ensure the cooling of photovoltaic (PV) backside and simultaneous production of electricity and heat. However, an effective cooling of the PV back is still a challenge that affects electrical and thermal performance of the PV/T system. In the present work, a PV/T numerical model is developed to simulate the heat flux based on energy balance implemented in MATLAB software. The numerical model is validated through the comparison of the three-layer PV model with the NOCT model and tested under the operation conditions of continental temperate climate. Moreover, the effect of velocity and water film thickness as important flow parameters on heat exchange and PV/T production is numerically investigated. Results revealed that the PV model is in good agreement with the NOCT one. An efficient heat transfer is obtained while increasing the velocity and water film thickness with optimal values of 0.035 m/s and 7 mm, respectively, at an inlet temperature of 20 °C. The PV/T system ensures a maximum thermal power of 1334.5 W and electrical power of 316.56 W (258.8 W for the PV). Finally, the comparison between the PV and PV/T system under real weather conditions showed the advantage of using the PV/T.
doi_str_mv 10.3390/app12020646
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4f24c210c1a1440bad79ba46696602ea</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4f24c210c1a1440bad79ba46696602ea</doaj_id><sourcerecordid>2621271725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-3f93e4be17269fd9546554f1e31af6db9d57e115c82d6c4b851a3cf15483a57f3</originalsourceid><addsrcrecordid>eNpNUU1LxDAQLaLgop78AwGPUjeTr7ZHWfwC0QUVj2GaJm6XtqlJV9h_b3RFdi4z83i8N8zLsnOgV5xXdI7jCIwyqoQ6yGaMFirnAorDvfk4O4txTVNVwEugswyfNr0NrcGO4NCQJQbs7ZQAcj1gt41tJM4HcjOscDDt8EGWNiSgT5uNxDvyjpMNZLnyk__y3YStmb-ubCJ05GUbJ9ufZkcOu2jP_vpJ9nZ787q4zx-f7x4W14-54UpMOXcVt6K2UDBVuaaSQkkpHFgO6FRTV40sLIA0JWuUEXUpAblxIEXJURaOn2QPO93G41qPoe0xbLXHVv8CPnxoDFNrOquFY8IwoAYQhKA1NkVVo1CqUooyi0nrYqc1Bv-5sXHSa78J6SFRM8WAFelKmViXO5YJPsZg3b8rUP0Tid6LhH8DyoR9-Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621271725</pqid></control><display><type>article</type><title>Numerical and Parametric Analysis for Enhancing Performances of Water Photovoltaic/Thermal System</title><source>Publicly Available Content Database</source><creator>El Fouas, Chaimae ; Cherecheș, Nelu Cristian ; Hudișteanu, Sebastian Valeriu ; Hajji, Bekkay ; Țurcanu, Emilian Florin ; Cherecheș, Monica Lilioara</creator><creatorcontrib>El Fouas, Chaimae ; Cherecheș, Nelu Cristian ; Hudișteanu, Sebastian Valeriu ; Hajji, Bekkay ; Țurcanu, Emilian Florin ; Cherecheș, Monica Lilioara</creatorcontrib><description>Photovoltaic/thermal (PV/T) systems are innovative cogeneration systems that ensure the cooling of photovoltaic (PV) backside and simultaneous production of electricity and heat. However, an effective cooling of the PV back is still a challenge that affects electrical and thermal performance of the PV/T system. In the present work, a PV/T numerical model is developed to simulate the heat flux based on energy balance implemented in MATLAB software. The numerical model is validated through the comparison of the three-layer PV model with the NOCT model and tested under the operation conditions of continental temperate climate. Moreover, the effect of velocity and water film thickness as important flow parameters on heat exchange and PV/T production is numerically investigated. Results revealed that the PV model is in good agreement with the NOCT one. An efficient heat transfer is obtained while increasing the velocity and water film thickness with optimal values of 0.035 m/s and 7 mm, respectively, at an inlet temperature of 20 °C. The PV/T system ensures a maximum thermal power of 1334.5 W and electrical power of 316.56 W (258.8 W for the PV). Finally, the comparison between the PV and PV/T system under real weather conditions showed the advantage of using the PV/T.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app12020646</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Aluminum ; Cogeneration ; Cooling ; Efficiency ; Electric power ; electrical efficiency ; Electricity ; Energy balance ; Film thickness ; Heat conductivity ; Heat flux ; Heat transfer ; Inlet temperature ; Mathematical models ; Numerical analysis ; numerical model ; Numerical models ; Parametric analysis ; Parametric statistics ; Photovoltaic cells ; photovoltaic thermal system ; Photovoltaics ; Radiation ; Renewable resources ; solar energy ; thermal efficiency ; Thermal power ; Velocity ; water cooling ; Water film ; Weather</subject><ispartof>Applied sciences, 2022-01, Vol.12 (2), p.646</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-3f93e4be17269fd9546554f1e31af6db9d57e115c82d6c4b851a3cf15483a57f3</citedby><cites>FETCH-LOGICAL-c364t-3f93e4be17269fd9546554f1e31af6db9d57e115c82d6c4b851a3cf15483a57f3</cites><orcidid>0000-0002-6704-3123 ; 0000-0001-7944-7275 ; 0000-0002-9678-5708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2621271725/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2621271725?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>El Fouas, Chaimae</creatorcontrib><creatorcontrib>Cherecheș, Nelu Cristian</creatorcontrib><creatorcontrib>Hudișteanu, Sebastian Valeriu</creatorcontrib><creatorcontrib>Hajji, Bekkay</creatorcontrib><creatorcontrib>Țurcanu, Emilian Florin</creatorcontrib><creatorcontrib>Cherecheș, Monica Lilioara</creatorcontrib><title>Numerical and Parametric Analysis for Enhancing Performances of Water Photovoltaic/Thermal System</title><title>Applied sciences</title><description>Photovoltaic/thermal (PV/T) systems are innovative cogeneration systems that ensure the cooling of photovoltaic (PV) backside and simultaneous production of electricity and heat. However, an effective cooling of the PV back is still a challenge that affects electrical and thermal performance of the PV/T system. In the present work, a PV/T numerical model is developed to simulate the heat flux based on energy balance implemented in MATLAB software. The numerical model is validated through the comparison of the three-layer PV model with the NOCT model and tested under the operation conditions of continental temperate climate. Moreover, the effect of velocity and water film thickness as important flow parameters on heat exchange and PV/T production is numerically investigated. Results revealed that the PV model is in good agreement with the NOCT one. An efficient heat transfer is obtained while increasing the velocity and water film thickness with optimal values of 0.035 m/s and 7 mm, respectively, at an inlet temperature of 20 °C. The PV/T system ensures a maximum thermal power of 1334.5 W and electrical power of 316.56 W (258.8 W for the PV). Finally, the comparison between the PV and PV/T system under real weather conditions showed the advantage of using the PV/T.</description><subject>Alternative energy sources</subject><subject>Aluminum</subject><subject>Cogeneration</subject><subject>Cooling</subject><subject>Efficiency</subject><subject>Electric power</subject><subject>electrical efficiency</subject><subject>Electricity</subject><subject>Energy balance</subject><subject>Film thickness</subject><subject>Heat conductivity</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Inlet temperature</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>numerical model</subject><subject>Numerical models</subject><subject>Parametric analysis</subject><subject>Parametric statistics</subject><subject>Photovoltaic cells</subject><subject>photovoltaic thermal system</subject><subject>Photovoltaics</subject><subject>Radiation</subject><subject>Renewable resources</subject><subject>solar energy</subject><subject>thermal efficiency</subject><subject>Thermal power</subject><subject>Velocity</subject><subject>water cooling</subject><subject>Water film</subject><subject>Weather</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LxDAQLaLgop78AwGPUjeTr7ZHWfwC0QUVj2GaJm6XtqlJV9h_b3RFdi4z83i8N8zLsnOgV5xXdI7jCIwyqoQ6yGaMFirnAorDvfk4O4txTVNVwEugswyfNr0NrcGO4NCQJQbs7ZQAcj1gt41tJM4HcjOscDDt8EGWNiSgT5uNxDvyjpMNZLnyk__y3YStmb-ubCJ05GUbJ9ufZkcOu2jP_vpJ9nZ787q4zx-f7x4W14-54UpMOXcVt6K2UDBVuaaSQkkpHFgO6FRTV40sLIA0JWuUEXUpAblxIEXJURaOn2QPO93G41qPoe0xbLXHVv8CPnxoDFNrOquFY8IwoAYQhKA1NkVVo1CqUooyi0nrYqc1Bv-5sXHSa78J6SFRM8WAFelKmViXO5YJPsZg3b8rUP0Tid6LhH8DyoR9-Q</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>El Fouas, Chaimae</creator><creator>Cherecheș, Nelu Cristian</creator><creator>Hudișteanu, Sebastian Valeriu</creator><creator>Hajji, Bekkay</creator><creator>Țurcanu, Emilian Florin</creator><creator>Cherecheș, Monica Lilioara</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6704-3123</orcidid><orcidid>https://orcid.org/0000-0001-7944-7275</orcidid><orcidid>https://orcid.org/0000-0002-9678-5708</orcidid></search><sort><creationdate>20220101</creationdate><title>Numerical and Parametric Analysis for Enhancing Performances of Water Photovoltaic/Thermal System</title><author>El Fouas, Chaimae ; Cherecheș, Nelu Cristian ; Hudișteanu, Sebastian Valeriu ; Hajji, Bekkay ; Țurcanu, Emilian Florin ; Cherecheș, Monica Lilioara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-3f93e4be17269fd9546554f1e31af6db9d57e115c82d6c4b851a3cf15483a57f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative energy sources</topic><topic>Aluminum</topic><topic>Cogeneration</topic><topic>Cooling</topic><topic>Efficiency</topic><topic>Electric power</topic><topic>electrical efficiency</topic><topic>Electricity</topic><topic>Energy balance</topic><topic>Film thickness</topic><topic>Heat conductivity</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Inlet temperature</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>numerical model</topic><topic>Numerical models</topic><topic>Parametric analysis</topic><topic>Parametric statistics</topic><topic>Photovoltaic cells</topic><topic>photovoltaic thermal system</topic><topic>Photovoltaics</topic><topic>Radiation</topic><topic>Renewable resources</topic><topic>solar energy</topic><topic>thermal efficiency</topic><topic>Thermal power</topic><topic>Velocity</topic><topic>water cooling</topic><topic>Water film</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Fouas, Chaimae</creatorcontrib><creatorcontrib>Cherecheș, Nelu Cristian</creatorcontrib><creatorcontrib>Hudișteanu, Sebastian Valeriu</creatorcontrib><creatorcontrib>Hajji, Bekkay</creatorcontrib><creatorcontrib>Țurcanu, Emilian Florin</creatorcontrib><creatorcontrib>Cherecheș, Monica Lilioara</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Fouas, Chaimae</au><au>Cherecheș, Nelu Cristian</au><au>Hudișteanu, Sebastian Valeriu</au><au>Hajji, Bekkay</au><au>Țurcanu, Emilian Florin</au><au>Cherecheș, Monica Lilioara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical and Parametric Analysis for Enhancing Performances of Water Photovoltaic/Thermal System</atitle><jtitle>Applied sciences</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>12</volume><issue>2</issue><spage>646</spage><pages>646-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Photovoltaic/thermal (PV/T) systems are innovative cogeneration systems that ensure the cooling of photovoltaic (PV) backside and simultaneous production of electricity and heat. However, an effective cooling of the PV back is still a challenge that affects electrical and thermal performance of the PV/T system. In the present work, a PV/T numerical model is developed to simulate the heat flux based on energy balance implemented in MATLAB software. The numerical model is validated through the comparison of the three-layer PV model with the NOCT model and tested under the operation conditions of continental temperate climate. Moreover, the effect of velocity and water film thickness as important flow parameters on heat exchange and PV/T production is numerically investigated. Results revealed that the PV model is in good agreement with the NOCT one. An efficient heat transfer is obtained while increasing the velocity and water film thickness with optimal values of 0.035 m/s and 7 mm, respectively, at an inlet temperature of 20 °C. The PV/T system ensures a maximum thermal power of 1334.5 W and electrical power of 316.56 W (258.8 W for the PV). Finally, the comparison between the PV and PV/T system under real weather conditions showed the advantage of using the PV/T.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app12020646</doi><orcidid>https://orcid.org/0000-0002-6704-3123</orcidid><orcidid>https://orcid.org/0000-0001-7944-7275</orcidid><orcidid>https://orcid.org/0000-0002-9678-5708</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2022-01, Vol.12 (2), p.646
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4f24c210c1a1440bad79ba46696602ea
source Publicly Available Content Database
subjects Alternative energy sources
Aluminum
Cogeneration
Cooling
Efficiency
Electric power
electrical efficiency
Electricity
Energy balance
Film thickness
Heat conductivity
Heat flux
Heat transfer
Inlet temperature
Mathematical models
Numerical analysis
numerical model
Numerical models
Parametric analysis
Parametric statistics
Photovoltaic cells
photovoltaic thermal system
Photovoltaics
Radiation
Renewable resources
solar energy
thermal efficiency
Thermal power
Velocity
water cooling
Water film
Weather
title Numerical and Parametric Analysis for Enhancing Performances of Water Photovoltaic/Thermal System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20and%20Parametric%20Analysis%20for%20Enhancing%20Performances%20of%20Water%20Photovoltaic/Thermal%20System&rft.jtitle=Applied%20sciences&rft.au=El%20Fouas,%20Chaimae&rft.date=2022-01-01&rft.volume=12&rft.issue=2&rft.spage=646&rft.pages=646-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app12020646&rft_dat=%3Cproquest_doaj_%3E2621271725%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-3f93e4be17269fd9546554f1e31af6db9d57e115c82d6c4b851a3cf15483a57f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621271725&rft_id=info:pmid/&rfr_iscdi=true