Loading…

Cyanobacterial Algal Bloom Monitoring: Molecular Methods and Technologies for Freshwater Ecosystems

Cyanobacteria (blue-green algae) can accumulate to form harmful algal blooms (HABs) on the surface of freshwater ecosystems under eutrophic conditions. Extensive HAB events can threaten local wildlife, public health, and the utilization of recreational waters. For the detection/quantification of cya...

Full description

Saved in:
Bibliographic Details
Published in:Microorganisms (Basel) 2023-03, Vol.11 (4), p.851
Main Authors: Saleem, Faizan, Jiang, Jennifer L, Atrache, Rachelle, Paschos, Athanasios, Edge, Thomas A, Schellhorn, Herb E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cyanobacteria (blue-green algae) can accumulate to form harmful algal blooms (HABs) on the surface of freshwater ecosystems under eutrophic conditions. Extensive HAB events can threaten local wildlife, public health, and the utilization of recreational waters. For the detection/quantification of cyanobacteria and cyanotoxins, both the United States Environmental Protection Agency (USEPA) and Health Canada increasingly indicate that molecular methods can be useful. However, each molecular detection method has specific advantages and limitations for monitoring HABs in recreational water ecosystems. Rapidly developing modern technologies, including satellite imaging, biosensors, and machine learning/artificial intelligence, can be integrated with standard/conventional methods to overcome the limitations associated with traditional cyanobacterial detection methodology. We examine advances in cyanobacterial cell lysis methodology and conventional/modern molecular detection methods, including imaging techniques, polymerase chain reaction (PCR)/DNA sequencing, enzyme-linked immunosorbent assays (ELISA), mass spectrometry, remote sensing, and machine learning/AI-based prediction models. This review focuses specifically on methodologies likely to be employed for recreational water ecosystems, especially in the Great Lakes region of North America.
ISSN:2076-2607
2076-2607
DOI:10.3390/microorganisms11040851