Loading…
On the Reproducibility of Thermal Measurements and of Related Thermal Metrics in Static and Transient Tests of Power Devices
Traditionally the thermal behavior of power devices is characterized by temperature measurements at the junction and at accessible external points. In large modules composed of thin chips and materials of high thermal conductivity the shape and distribution of the heat trajectories are influenced by...
Saved in:
Published in: | Energies (Basel) 2020, Vol.13 (3), p.557 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-b91aac0a5e85bd17ec61ce1252240b6afd488138cd5f5e88447e212f529031d23 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-b91aac0a5e85bd17ec61ce1252240b6afd488138cd5f5e88447e212f529031d23 |
container_end_page | |
container_issue | 3 |
container_start_page | 557 |
container_title | Energies (Basel) |
container_volume | 13 |
creator | Farkas, Gabor Schweitzer, Dirk Sarkany, Zoltan Rencz, Marta |
description | Traditionally the thermal behavior of power devices is characterized by temperature measurements at the junction and at accessible external points. In large modules composed of thin chips and materials of high thermal conductivity the shape and distribution of the heat trajectories are influenced by the external boundary represented by the cooling mount. This causes mediocre repeatability of the characteristic RthJC junction to case thermal resistance even in measurements at the same laboratory and causes very poor reproducibility among sites using dissimilar instrumentation. The Transient Dual Interface Methodology (TDIM) is based on the comparison of measured structure functions. With this method high repeatability can be achieved although introducing severe changes into the measurement environment is the essence of this test scheme. There is a systematic difference between thermal data measured with TDIM method and that measured with temperature probes, but we found that this difference was smaller than the scatter of the latter method. For checking production stability, we propose the use of a structure function-based Rth@Cth thermal metric, which is the thermal resistance value reached at the thermal capacitance belonging to the mass of the package base. This metric condenses the consistency of internal structural elements into a single number. |
doi_str_mv | 10.3390/en13030557 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4f4fde71b35245beb11a5fa93fb3b376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4f4fde71b35245beb11a5fa93fb3b376</doaj_id><sourcerecordid>2422313822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-b91aac0a5e85bd17ec61ce1252240b6afd488138cd5f5e88447e212f529031d23</originalsourceid><addsrcrecordid>eNpNUdtOHDEMHVVFKqK89Asi8VZp2ziezOURcSsSFQiW58hJnJLV7AwksyCkfnyzbNXiF1v2Oce3qvoC8htiL7_zCChRat1-qPah75sFyBY_vos_VYc5r2QxREDE_er39SjmBxa3_Jgmv3HRxiHOr2IKYvnAaU2D-MmUN4nXPM5Z0Oi3tVseaGb_DjOn6LKIo7ibaY7uDbhMNOZYeGLJuZAL8WZ64SRO-Tk6zp-rvUBD5sO__qC6Pz9bnvxYXF1fXJ4cXy0cNjAvbA9ETpLmTlsPLbsGHIPSStXSNhR83XWAnfM6FExX1y0rUEGrXiJ4hQfV5U7XT7QyjymuKb2aiaJ5S0zpl6FUhh7Y1KEOnluwqFWtLVsA0oF6DBYttk3ROtpplXs9bcpaZjVt0ljGN6pWqpy1U9uOX3col6acE4d_XUGa7bPM_2fhH6eshq0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422313822</pqid></control><display><type>article</type><title>On the Reproducibility of Thermal Measurements and of Related Thermal Metrics in Static and Transient Tests of Power Devices</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Farkas, Gabor ; Schweitzer, Dirk ; Sarkany, Zoltan ; Rencz, Marta</creator><creatorcontrib>Farkas, Gabor ; Schweitzer, Dirk ; Sarkany, Zoltan ; Rencz, Marta</creatorcontrib><description>Traditionally the thermal behavior of power devices is characterized by temperature measurements at the junction and at accessible external points. In large modules composed of thin chips and materials of high thermal conductivity the shape and distribution of the heat trajectories are influenced by the external boundary represented by the cooling mount. This causes mediocre repeatability of the characteristic RthJC junction to case thermal resistance even in measurements at the same laboratory and causes very poor reproducibility among sites using dissimilar instrumentation. The Transient Dual Interface Methodology (TDIM) is based on the comparison of measured structure functions. With this method high repeatability can be achieved although introducing severe changes into the measurement environment is the essence of this test scheme. There is a systematic difference between thermal data measured with TDIM method and that measured with temperature probes, but we found that this difference was smaller than the scatter of the latter method. For checking production stability, we propose the use of a structure function-based Rth@Cth thermal metric, which is the thermal resistance value reached at the thermal capacitance belonging to the mass of the package base. This metric condenses the consistency of internal structural elements into a single number.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en13030557</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>accuracy repeatability and reproducibility of thermal measurements ; Capacitance ; Heat ; Heat transfer ; Instrumentation ; non-destructive testing ; Reproducibility ; Semiconductors ; Structural members ; Structure-function relationships ; Temperature ; Temperature probes ; Thermal conductivity ; Thermal measurement ; Thermal resistance ; thermal testability ; thermal testing standards ; thermal transient testing</subject><ispartof>Energies (Basel), 2020, Vol.13 (3), p.557</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-b91aac0a5e85bd17ec61ce1252240b6afd488138cd5f5e88447e212f529031d23</citedby><cites>FETCH-LOGICAL-c361t-b91aac0a5e85bd17ec61ce1252240b6afd488138cd5f5e88447e212f529031d23</cites><orcidid>0000-0003-4183-3853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2422313822/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2422313822?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Farkas, Gabor</creatorcontrib><creatorcontrib>Schweitzer, Dirk</creatorcontrib><creatorcontrib>Sarkany, Zoltan</creatorcontrib><creatorcontrib>Rencz, Marta</creatorcontrib><title>On the Reproducibility of Thermal Measurements and of Related Thermal Metrics in Static and Transient Tests of Power Devices</title><title>Energies (Basel)</title><description>Traditionally the thermal behavior of power devices is characterized by temperature measurements at the junction and at accessible external points. In large modules composed of thin chips and materials of high thermal conductivity the shape and distribution of the heat trajectories are influenced by the external boundary represented by the cooling mount. This causes mediocre repeatability of the characteristic RthJC junction to case thermal resistance even in measurements at the same laboratory and causes very poor reproducibility among sites using dissimilar instrumentation. The Transient Dual Interface Methodology (TDIM) is based on the comparison of measured structure functions. With this method high repeatability can be achieved although introducing severe changes into the measurement environment is the essence of this test scheme. There is a systematic difference between thermal data measured with TDIM method and that measured with temperature probes, but we found that this difference was smaller than the scatter of the latter method. For checking production stability, we propose the use of a structure function-based Rth@Cth thermal metric, which is the thermal resistance value reached at the thermal capacitance belonging to the mass of the package base. This metric condenses the consistency of internal structural elements into a single number.</description><subject>accuracy repeatability and reproducibility of thermal measurements</subject><subject>Capacitance</subject><subject>Heat</subject><subject>Heat transfer</subject><subject>Instrumentation</subject><subject>non-destructive testing</subject><subject>Reproducibility</subject><subject>Semiconductors</subject><subject>Structural members</subject><subject>Structure-function relationships</subject><subject>Temperature</subject><subject>Temperature probes</subject><subject>Thermal conductivity</subject><subject>Thermal measurement</subject><subject>Thermal resistance</subject><subject>thermal testability</subject><subject>thermal testing standards</subject><subject>thermal transient testing</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtOHDEMHVVFKqK89Asi8VZp2ziezOURcSsSFQiW58hJnJLV7AwksyCkfnyzbNXiF1v2Oce3qvoC8htiL7_zCChRat1-qPah75sFyBY_vos_VYc5r2QxREDE_er39SjmBxa3_Jgmv3HRxiHOr2IKYvnAaU2D-MmUN4nXPM5Z0Oi3tVseaGb_DjOn6LKIo7ibaY7uDbhMNOZYeGLJuZAL8WZ64SRO-Tk6zp-rvUBD5sO__qC6Pz9bnvxYXF1fXJ4cXy0cNjAvbA9ETpLmTlsPLbsGHIPSStXSNhR83XWAnfM6FExX1y0rUEGrXiJ4hQfV5U7XT7QyjymuKb2aiaJ5S0zpl6FUhh7Y1KEOnluwqFWtLVsA0oF6DBYttk3ROtpplXs9bcpaZjVt0ljGN6pWqpy1U9uOX3col6acE4d_XUGa7bPM_2fhH6eshq0</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Farkas, Gabor</creator><creator>Schweitzer, Dirk</creator><creator>Sarkany, Zoltan</creator><creator>Rencz, Marta</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4183-3853</orcidid></search><sort><creationdate>2020</creationdate><title>On the Reproducibility of Thermal Measurements and of Related Thermal Metrics in Static and Transient Tests of Power Devices</title><author>Farkas, Gabor ; Schweitzer, Dirk ; Sarkany, Zoltan ; Rencz, Marta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-b91aac0a5e85bd17ec61ce1252240b6afd488138cd5f5e88447e212f529031d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>accuracy repeatability and reproducibility of thermal measurements</topic><topic>Capacitance</topic><topic>Heat</topic><topic>Heat transfer</topic><topic>Instrumentation</topic><topic>non-destructive testing</topic><topic>Reproducibility</topic><topic>Semiconductors</topic><topic>Structural members</topic><topic>Structure-function relationships</topic><topic>Temperature</topic><topic>Temperature probes</topic><topic>Thermal conductivity</topic><topic>Thermal measurement</topic><topic>Thermal resistance</topic><topic>thermal testability</topic><topic>thermal testing standards</topic><topic>thermal transient testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farkas, Gabor</creatorcontrib><creatorcontrib>Schweitzer, Dirk</creatorcontrib><creatorcontrib>Sarkany, Zoltan</creatorcontrib><creatorcontrib>Rencz, Marta</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farkas, Gabor</au><au>Schweitzer, Dirk</au><au>Sarkany, Zoltan</au><au>Rencz, Marta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Reproducibility of Thermal Measurements and of Related Thermal Metrics in Static and Transient Tests of Power Devices</atitle><jtitle>Energies (Basel)</jtitle><date>2020</date><risdate>2020</risdate><volume>13</volume><issue>3</issue><spage>557</spage><pages>557-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Traditionally the thermal behavior of power devices is characterized by temperature measurements at the junction and at accessible external points. In large modules composed of thin chips and materials of high thermal conductivity the shape and distribution of the heat trajectories are influenced by the external boundary represented by the cooling mount. This causes mediocre repeatability of the characteristic RthJC junction to case thermal resistance even in measurements at the same laboratory and causes very poor reproducibility among sites using dissimilar instrumentation. The Transient Dual Interface Methodology (TDIM) is based on the comparison of measured structure functions. With this method high repeatability can be achieved although introducing severe changes into the measurement environment is the essence of this test scheme. There is a systematic difference between thermal data measured with TDIM method and that measured with temperature probes, but we found that this difference was smaller than the scatter of the latter method. For checking production stability, we propose the use of a structure function-based Rth@Cth thermal metric, which is the thermal resistance value reached at the thermal capacitance belonging to the mass of the package base. This metric condenses the consistency of internal structural elements into a single number.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en13030557</doi><orcidid>https://orcid.org/0000-0003-4183-3853</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2020, Vol.13 (3), p.557 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4f4fde71b35245beb11a5fa93fb3b376 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | accuracy repeatability and reproducibility of thermal measurements Capacitance Heat Heat transfer Instrumentation non-destructive testing Reproducibility Semiconductors Structural members Structure-function relationships Temperature Temperature probes Thermal conductivity Thermal measurement Thermal resistance thermal testability thermal testing standards thermal transient testing |
title | On the Reproducibility of Thermal Measurements and of Related Thermal Metrics in Static and Transient Tests of Power Devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Reproducibility%20of%20Thermal%20Measurements%20and%20of%20Related%20Thermal%20Metrics%20in%20Static%20and%20Transient%20Tests%20of%20Power%20Devices&rft.jtitle=Energies%20(Basel)&rft.au=Farkas,%20Gabor&rft.date=2020&rft.volume=13&rft.issue=3&rft.spage=557&rft.pages=557-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en13030557&rft_dat=%3Cproquest_doaj_%3E2422313822%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-b91aac0a5e85bd17ec61ce1252240b6afd488138cd5f5e88447e212f529031d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2422313822&rft_id=info:pmid/&rfr_iscdi=true |