Loading…

On the Reproducibility of Thermal Measurements and of Related Thermal Metrics in Static and Transient Tests of Power Devices

Traditionally the thermal behavior of power devices is characterized by temperature measurements at the junction and at accessible external points. In large modules composed of thin chips and materials of high thermal conductivity the shape and distribution of the heat trajectories are influenced by...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2020, Vol.13 (3), p.557
Main Authors: Farkas, Gabor, Schweitzer, Dirk, Sarkany, Zoltan, Rencz, Marta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-b91aac0a5e85bd17ec61ce1252240b6afd488138cd5f5e88447e212f529031d23
cites cdi_FETCH-LOGICAL-c361t-b91aac0a5e85bd17ec61ce1252240b6afd488138cd5f5e88447e212f529031d23
container_end_page
container_issue 3
container_start_page 557
container_title Energies (Basel)
container_volume 13
creator Farkas, Gabor
Schweitzer, Dirk
Sarkany, Zoltan
Rencz, Marta
description Traditionally the thermal behavior of power devices is characterized by temperature measurements at the junction and at accessible external points. In large modules composed of thin chips and materials of high thermal conductivity the shape and distribution of the heat trajectories are influenced by the external boundary represented by the cooling mount. This causes mediocre repeatability of the characteristic RthJC junction to case thermal resistance even in measurements at the same laboratory and causes very poor reproducibility among sites using dissimilar instrumentation. The Transient Dual Interface Methodology (TDIM) is based on the comparison of measured structure functions. With this method high repeatability can be achieved although introducing severe changes into the measurement environment is the essence of this test scheme. There is a systematic difference between thermal data measured with TDIM method and that measured with temperature probes, but we found that this difference was smaller than the scatter of the latter method. For checking production stability, we propose the use of a structure function-based Rth@Cth thermal metric, which is the thermal resistance value reached at the thermal capacitance belonging to the mass of the package base. This metric condenses the consistency of internal structural elements into a single number.
doi_str_mv 10.3390/en13030557
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4f4fde71b35245beb11a5fa93fb3b376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4f4fde71b35245beb11a5fa93fb3b376</doaj_id><sourcerecordid>2422313822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-b91aac0a5e85bd17ec61ce1252240b6afd488138cd5f5e88447e212f529031d23</originalsourceid><addsrcrecordid>eNpNUdtOHDEMHVVFKqK89Asi8VZp2ziezOURcSsSFQiW58hJnJLV7AwksyCkfnyzbNXiF1v2Oce3qvoC8htiL7_zCChRat1-qPah75sFyBY_vos_VYc5r2QxREDE_er39SjmBxa3_Jgmv3HRxiHOr2IKYvnAaU2D-MmUN4nXPM5Z0Oi3tVseaGb_DjOn6LKIo7ibaY7uDbhMNOZYeGLJuZAL8WZ64SRO-Tk6zp-rvUBD5sO__qC6Pz9bnvxYXF1fXJ4cXy0cNjAvbA9ETpLmTlsPLbsGHIPSStXSNhR83XWAnfM6FExX1y0rUEGrXiJ4hQfV5U7XT7QyjymuKb2aiaJ5S0zpl6FUhh7Y1KEOnluwqFWtLVsA0oF6DBYttk3ROtpplXs9bcpaZjVt0ljGN6pWqpy1U9uOX3col6acE4d_XUGa7bPM_2fhH6eshq0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422313822</pqid></control><display><type>article</type><title>On the Reproducibility of Thermal Measurements and of Related Thermal Metrics in Static and Transient Tests of Power Devices</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Farkas, Gabor ; Schweitzer, Dirk ; Sarkany, Zoltan ; Rencz, Marta</creator><creatorcontrib>Farkas, Gabor ; Schweitzer, Dirk ; Sarkany, Zoltan ; Rencz, Marta</creatorcontrib><description>Traditionally the thermal behavior of power devices is characterized by temperature measurements at the junction and at accessible external points. In large modules composed of thin chips and materials of high thermal conductivity the shape and distribution of the heat trajectories are influenced by the external boundary represented by the cooling mount. This causes mediocre repeatability of the characteristic RthJC junction to case thermal resistance even in measurements at the same laboratory and causes very poor reproducibility among sites using dissimilar instrumentation. The Transient Dual Interface Methodology (TDIM) is based on the comparison of measured structure functions. With this method high repeatability can be achieved although introducing severe changes into the measurement environment is the essence of this test scheme. There is a systematic difference between thermal data measured with TDIM method and that measured with temperature probes, but we found that this difference was smaller than the scatter of the latter method. For checking production stability, we propose the use of a structure function-based Rth@Cth thermal metric, which is the thermal resistance value reached at the thermal capacitance belonging to the mass of the package base. This metric condenses the consistency of internal structural elements into a single number.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en13030557</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>accuracy repeatability and reproducibility of thermal measurements ; Capacitance ; Heat ; Heat transfer ; Instrumentation ; non-destructive testing ; Reproducibility ; Semiconductors ; Structural members ; Structure-function relationships ; Temperature ; Temperature probes ; Thermal conductivity ; Thermal measurement ; Thermal resistance ; thermal testability ; thermal testing standards ; thermal transient testing</subject><ispartof>Energies (Basel), 2020, Vol.13 (3), p.557</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-b91aac0a5e85bd17ec61ce1252240b6afd488138cd5f5e88447e212f529031d23</citedby><cites>FETCH-LOGICAL-c361t-b91aac0a5e85bd17ec61ce1252240b6afd488138cd5f5e88447e212f529031d23</cites><orcidid>0000-0003-4183-3853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2422313822/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2422313822?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Farkas, Gabor</creatorcontrib><creatorcontrib>Schweitzer, Dirk</creatorcontrib><creatorcontrib>Sarkany, Zoltan</creatorcontrib><creatorcontrib>Rencz, Marta</creatorcontrib><title>On the Reproducibility of Thermal Measurements and of Related Thermal Metrics in Static and Transient Tests of Power Devices</title><title>Energies (Basel)</title><description>Traditionally the thermal behavior of power devices is characterized by temperature measurements at the junction and at accessible external points. In large modules composed of thin chips and materials of high thermal conductivity the shape and distribution of the heat trajectories are influenced by the external boundary represented by the cooling mount. This causes mediocre repeatability of the characteristic RthJC junction to case thermal resistance even in measurements at the same laboratory and causes very poor reproducibility among sites using dissimilar instrumentation. The Transient Dual Interface Methodology (TDIM) is based on the comparison of measured structure functions. With this method high repeatability can be achieved although introducing severe changes into the measurement environment is the essence of this test scheme. There is a systematic difference between thermal data measured with TDIM method and that measured with temperature probes, but we found that this difference was smaller than the scatter of the latter method. For checking production stability, we propose the use of a structure function-based Rth@Cth thermal metric, which is the thermal resistance value reached at the thermal capacitance belonging to the mass of the package base. This metric condenses the consistency of internal structural elements into a single number.</description><subject>accuracy repeatability and reproducibility of thermal measurements</subject><subject>Capacitance</subject><subject>Heat</subject><subject>Heat transfer</subject><subject>Instrumentation</subject><subject>non-destructive testing</subject><subject>Reproducibility</subject><subject>Semiconductors</subject><subject>Structural members</subject><subject>Structure-function relationships</subject><subject>Temperature</subject><subject>Temperature probes</subject><subject>Thermal conductivity</subject><subject>Thermal measurement</subject><subject>Thermal resistance</subject><subject>thermal testability</subject><subject>thermal testing standards</subject><subject>thermal transient testing</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtOHDEMHVVFKqK89Asi8VZp2ziezOURcSsSFQiW58hJnJLV7AwksyCkfnyzbNXiF1v2Oce3qvoC8htiL7_zCChRat1-qPah75sFyBY_vos_VYc5r2QxREDE_er39SjmBxa3_Jgmv3HRxiHOr2IKYvnAaU2D-MmUN4nXPM5Z0Oi3tVseaGb_DjOn6LKIo7ibaY7uDbhMNOZYeGLJuZAL8WZ64SRO-Tk6zp-rvUBD5sO__qC6Pz9bnvxYXF1fXJ4cXy0cNjAvbA9ETpLmTlsPLbsGHIPSStXSNhR83XWAnfM6FExX1y0rUEGrXiJ4hQfV5U7XT7QyjymuKb2aiaJ5S0zpl6FUhh7Y1KEOnluwqFWtLVsA0oF6DBYttk3ROtpplXs9bcpaZjVt0ljGN6pWqpy1U9uOX3col6acE4d_XUGa7bPM_2fhH6eshq0</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Farkas, Gabor</creator><creator>Schweitzer, Dirk</creator><creator>Sarkany, Zoltan</creator><creator>Rencz, Marta</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4183-3853</orcidid></search><sort><creationdate>2020</creationdate><title>On the Reproducibility of Thermal Measurements and of Related Thermal Metrics in Static and Transient Tests of Power Devices</title><author>Farkas, Gabor ; Schweitzer, Dirk ; Sarkany, Zoltan ; Rencz, Marta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-b91aac0a5e85bd17ec61ce1252240b6afd488138cd5f5e88447e212f529031d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>accuracy repeatability and reproducibility of thermal measurements</topic><topic>Capacitance</topic><topic>Heat</topic><topic>Heat transfer</topic><topic>Instrumentation</topic><topic>non-destructive testing</topic><topic>Reproducibility</topic><topic>Semiconductors</topic><topic>Structural members</topic><topic>Structure-function relationships</topic><topic>Temperature</topic><topic>Temperature probes</topic><topic>Thermal conductivity</topic><topic>Thermal measurement</topic><topic>Thermal resistance</topic><topic>thermal testability</topic><topic>thermal testing standards</topic><topic>thermal transient testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farkas, Gabor</creatorcontrib><creatorcontrib>Schweitzer, Dirk</creatorcontrib><creatorcontrib>Sarkany, Zoltan</creatorcontrib><creatorcontrib>Rencz, Marta</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farkas, Gabor</au><au>Schweitzer, Dirk</au><au>Sarkany, Zoltan</au><au>Rencz, Marta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Reproducibility of Thermal Measurements and of Related Thermal Metrics in Static and Transient Tests of Power Devices</atitle><jtitle>Energies (Basel)</jtitle><date>2020</date><risdate>2020</risdate><volume>13</volume><issue>3</issue><spage>557</spage><pages>557-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Traditionally the thermal behavior of power devices is characterized by temperature measurements at the junction and at accessible external points. In large modules composed of thin chips and materials of high thermal conductivity the shape and distribution of the heat trajectories are influenced by the external boundary represented by the cooling mount. This causes mediocre repeatability of the characteristic RthJC junction to case thermal resistance even in measurements at the same laboratory and causes very poor reproducibility among sites using dissimilar instrumentation. The Transient Dual Interface Methodology (TDIM) is based on the comparison of measured structure functions. With this method high repeatability can be achieved although introducing severe changes into the measurement environment is the essence of this test scheme. There is a systematic difference between thermal data measured with TDIM method and that measured with temperature probes, but we found that this difference was smaller than the scatter of the latter method. For checking production stability, we propose the use of a structure function-based Rth@Cth thermal metric, which is the thermal resistance value reached at the thermal capacitance belonging to the mass of the package base. This metric condenses the consistency of internal structural elements into a single number.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en13030557</doi><orcidid>https://orcid.org/0000-0003-4183-3853</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2020, Vol.13 (3), p.557
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4f4fde71b35245beb11a5fa93fb3b376
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects accuracy repeatability and reproducibility of thermal measurements
Capacitance
Heat
Heat transfer
Instrumentation
non-destructive testing
Reproducibility
Semiconductors
Structural members
Structure-function relationships
Temperature
Temperature probes
Thermal conductivity
Thermal measurement
Thermal resistance
thermal testability
thermal testing standards
thermal transient testing
title On the Reproducibility of Thermal Measurements and of Related Thermal Metrics in Static and Transient Tests of Power Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Reproducibility%20of%20Thermal%20Measurements%20and%20of%20Related%20Thermal%20Metrics%20in%20Static%20and%20Transient%20Tests%20of%20Power%20Devices&rft.jtitle=Energies%20(Basel)&rft.au=Farkas,%20Gabor&rft.date=2020&rft.volume=13&rft.issue=3&rft.spage=557&rft.pages=557-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en13030557&rft_dat=%3Cproquest_doaj_%3E2422313822%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-b91aac0a5e85bd17ec61ce1252240b6afd488138cd5f5e88447e212f529031d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2422313822&rft_id=info:pmid/&rfr_iscdi=true