Loading…

Hierarchical Optimization Method for Energy Scheduling of Multiple Microgrids

This paper proposes a hierarchical optimization method for the energy scheduling of multiple microgrids (MMGs) in the distribution network of power grids. An energy market operator (EMO) is constructed to regulate energy storage systems (ESSs) and load demands in MMGs. The optimization process is di...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2019-02, Vol.9 (4), p.624
Main Authors: Rui, Tao, Li, Guoli, Wang, Qunjing, Hu, Cungang, Shen, Weixiang, Xu, Bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a hierarchical optimization method for the energy scheduling of multiple microgrids (MMGs) in the distribution network of power grids. An energy market operator (EMO) is constructed to regulate energy storage systems (ESSs) and load demands in MMGs. The optimization process is divided into two stages. In the first stage, each MG optimizes the scheduling of its own ESS within a rolling horizon control framework based on a long-term forecast of the local photovoltaic (PV) output, the local load demand and the price sent by the EMO. In the second stage, the EMO establishes an internal price incentive mechanism to maximize its own profits based on the load demand of each MG. The optimization problems in these two stages are solved using mixed integer programming (MIP) and Stackelberg game theory, respectively. Simulation results verified the effectiveness of the proposed method in terms of the promotion of energy trading and improvement of economic benefits of MMGs.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9040624